summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'tesseract/src/ccmain/equationdetect.cpp')
-rw-r--r--tesseract/src/ccmain/equationdetect.cpp1516
1 files changed, 1516 insertions, 0 deletions
diff --git a/tesseract/src/ccmain/equationdetect.cpp b/tesseract/src/ccmain/equationdetect.cpp
new file mode 100644
index 00000000..518468b4
--- /dev/null
+++ b/tesseract/src/ccmain/equationdetect.cpp
@@ -0,0 +1,1516 @@
+///////////////////////////////////////////////////////////////////////
+// File: equationdetect.cpp
+// Description: Helper classes to detect equations.
+// Author: Zongyi (Joe) Liu (joeliu@google.com)
+//
+// (C) Copyright 2011, Google Inc.
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+///////////////////////////////////////////////////////////////////////
+
+// Include automatically generated configuration file if running autoconf.
+#ifdef HAVE_CONFIG_H
+#include "config_auto.h"
+#endif
+
+#include "equationdetect.h"
+
+#include "bbgrid.h"
+#include "classify.h"
+#include "colpartition.h"
+#include "colpartitiongrid.h"
+#include "colpartitionset.h"
+#include "ratngs.h"
+#include "tesseractclass.h"
+
+#include "helpers.h"
+
+#include <algorithm>
+#include <cfloat>
+#include <limits>
+#include <memory>
+
+namespace tesseract {
+
+// Config variables.
+static BOOL_VAR(equationdetect_save_bi_image, false, "Save input bi image");
+static BOOL_VAR(equationdetect_save_spt_image, false, "Save special character image");
+static BOOL_VAR(equationdetect_save_seed_image, false, "Save the seed image");
+static BOOL_VAR(equationdetect_save_merged_image, false, "Save the merged image");
+
+///////////////////////////////////////////////////////////////////////////
+// Utility ColParition sort functions.
+///////////////////////////////////////////////////////////////////////////
+static int SortCPByTopReverse(const void* p1, const void* p2) {
+ const ColPartition* cp1 = *static_cast<ColPartition* const*>(p1);
+ const ColPartition* cp2 = *static_cast<ColPartition* const*>(p2);
+ ASSERT_HOST(cp1 != nullptr && cp2 != nullptr);
+ const TBOX &box1(cp1->bounding_box()), &box2(cp2->bounding_box());
+ return box2.top() - box1.top();
+}
+
+static int SortCPByBottom(const void* p1, const void* p2) {
+ const ColPartition* cp1 = *static_cast<ColPartition* const*>(p1);
+ const ColPartition* cp2 = *static_cast<ColPartition* const*>(p2);
+ ASSERT_HOST(cp1 != nullptr && cp2 != nullptr);
+ const TBOX &box1(cp1->bounding_box()), &box2(cp2->bounding_box());
+ return box1.bottom() - box2.bottom();
+}
+
+static int SortCPByHeight(const void* p1, const void* p2) {
+ const ColPartition* cp1 = *static_cast<ColPartition* const*>(p1);
+ const ColPartition* cp2 = *static_cast<ColPartition* const*>(p2);
+ ASSERT_HOST(cp1 != nullptr && cp2 != nullptr);
+ const TBOX &box1(cp1->bounding_box()), &box2(cp2->bounding_box());
+ return box1.height() - box2.height();
+}
+
+// TODO(joeliu): we may want to parameterize these constants.
+const float kMathDigitDensityTh1 = 0.25;
+const float kMathDigitDensityTh2 = 0.1;
+const float kMathItalicDensityTh = 0.5;
+const float kUnclearDensityTh = 0.25;
+const int kSeedBlobsCountTh = 10;
+const int kLeftIndentAlignmentCountTh = 1;
+
+// Returns true if PolyBlockType is of text type or equation type.
+inline bool IsTextOrEquationType(PolyBlockType type) {
+ return PTIsTextType(type) || type == PT_EQUATION;
+}
+
+inline bool IsLeftIndented(const EquationDetect::IndentType type) {
+ return type == EquationDetect::LEFT_INDENT ||
+ type == EquationDetect::BOTH_INDENT;
+}
+
+inline bool IsRightIndented(const EquationDetect::IndentType type) {
+ return type == EquationDetect::RIGHT_INDENT ||
+ type == EquationDetect::BOTH_INDENT;
+}
+
+EquationDetect::EquationDetect(const char* equ_datapath,
+ const char* equ_name) {
+ const char* default_name = "equ";
+ if (equ_name == nullptr) {
+ equ_name = default_name;
+ }
+ lang_tesseract_ = nullptr;
+ resolution_ = 0;
+ page_count_ = 0;
+
+ if (equ_tesseract_.init_tesseract(equ_datapath, equ_name,
+ OEM_TESSERACT_ONLY)) {
+ tprintf("Warning: equation region detection requested,"
+ " but %s failed to load from %s\n", equ_name, equ_datapath);
+ }
+
+ cps_super_bbox_ = nullptr;
+}
+
+EquationDetect::~EquationDetect() { delete (cps_super_bbox_); }
+
+void EquationDetect::SetLangTesseract(Tesseract* lang_tesseract) {
+ lang_tesseract_ = lang_tesseract;
+}
+
+void EquationDetect::SetResolution(const int resolution) {
+ resolution_ = resolution;
+}
+
+int EquationDetect::LabelSpecialText(TO_BLOCK* to_block) {
+ if (to_block == nullptr) {
+ tprintf("Warning: input to_block is nullptr!\n");
+ return -1;
+ }
+
+ GenericVector<BLOBNBOX_LIST*> blob_lists;
+ blob_lists.push_back(&(to_block->blobs));
+ blob_lists.push_back(&(to_block->large_blobs));
+ for (int i = 0; i < blob_lists.size(); ++i) {
+ BLOBNBOX_IT bbox_it(blob_lists[i]);
+ for (bbox_it.mark_cycle_pt (); !bbox_it.cycled_list();
+ bbox_it.forward()) {
+ bbox_it.data()->set_special_text_type(BSTT_NONE);
+ }
+ }
+
+ return 0;
+}
+
+void EquationDetect::IdentifySpecialText(
+ BLOBNBOX *blobnbox, const int height_th) {
+ ASSERT_HOST(blobnbox != nullptr);
+ if (blobnbox->bounding_box().height() < height_th && height_th > 0) {
+ // For small blob, we simply set to BSTT_NONE.
+ blobnbox->set_special_text_type(BSTT_NONE);
+ return;
+ }
+
+ BLOB_CHOICE_LIST ratings_equ, ratings_lang;
+ C_BLOB* blob = blobnbox->cblob();
+ // TODO(joeliu/rays) Fix this. We may have to normalize separately for
+ // each classifier here, as they may require different PolygonalCopy.
+ TBLOB* tblob = TBLOB::PolygonalCopy(false, blob);
+ const TBOX& box = tblob->bounding_box();
+
+ // Normalize the blob. Set the origin to the place we want to be the
+ // bottom-middle, and scaling is to make the height the x-height.
+ const float scaling = static_cast<float>(kBlnXHeight) / box.height();
+ const float x_orig = (box.left() + box.right()) / 2.0f, y_orig = box.bottom();
+ std::unique_ptr<TBLOB> normed_blob(new TBLOB(*tblob));
+ normed_blob->Normalize(nullptr, nullptr, nullptr, x_orig, y_orig, scaling, scaling,
+ 0.0f, static_cast<float>(kBlnBaselineOffset),
+ false, nullptr);
+ equ_tesseract_.AdaptiveClassifier(normed_blob.get(), &ratings_equ);
+ lang_tesseract_->AdaptiveClassifier(normed_blob.get(), &ratings_lang);
+ delete tblob;
+
+ // Get the best choice from ratings_lang and rating_equ. As the choice in the
+ // list has already been sorted by the certainty, we simply use the first
+ // choice.
+ BLOB_CHOICE *lang_choice = nullptr, *equ_choice = nullptr;
+ if (ratings_lang.length() > 0) {
+ BLOB_CHOICE_IT choice_it(&ratings_lang);
+ lang_choice = choice_it.data();
+ }
+ if (ratings_equ.length() > 0) {
+ BLOB_CHOICE_IT choice_it(&ratings_equ);
+ equ_choice = choice_it.data();
+ }
+
+ const float lang_score = lang_choice ? lang_choice->certainty() : -FLT_MAX;
+ const float equ_score = equ_choice ? equ_choice->certainty() : -FLT_MAX;
+
+ const float kConfScoreTh = -5.0f, kConfDiffTh = 1.8;
+ // The scores here are negative, so the max/min == fabs(min/max).
+ // float ratio = fmax(lang_score, equ_score) / fmin(lang_score, equ_score);
+ const float diff = fabs(lang_score - equ_score);
+ BlobSpecialTextType type = BSTT_NONE;
+
+ // Classification.
+ if (fmax(lang_score, equ_score) < kConfScoreTh) {
+ // If both score are very small, then mark it as unclear.
+ type = BSTT_UNCLEAR;
+ } else if (diff > kConfDiffTh && equ_score > lang_score) {
+ // If equ_score is significantly higher, then we classify this character as
+ // math symbol.
+ type = BSTT_MATH;
+ } else if (lang_choice) {
+ // For other cases: lang_score is similar or significantly higher.
+ type = EstimateTypeForUnichar(
+ lang_tesseract_->unicharset, lang_choice->unichar_id());
+ }
+
+ if (type == BSTT_NONE && lang_tesseract_->get_fontinfo_table().get(
+ lang_choice->fontinfo_id()).is_italic()) {
+ // For text symbol, we still check if it is italic.
+ blobnbox->set_special_text_type(BSTT_ITALIC);
+ } else {
+ blobnbox->set_special_text_type(type);
+ }
+}
+
+BlobSpecialTextType EquationDetect::EstimateTypeForUnichar(
+ const UNICHARSET& unicharset, const UNICHAR_ID id) const {
+ const STRING s = unicharset.id_to_unichar(id);
+ if (unicharset.get_isalpha(id)) {
+ return BSTT_NONE;
+ }
+
+ if (unicharset.get_ispunctuation(id)) {
+ // Exclude some special texts that are likely to be confused as math symbol.
+ static GenericVector<UNICHAR_ID> ids_to_exclude;
+ if (ids_to_exclude.empty()) {
+ static const STRING kCharsToEx[] = {"'", "`", "\"", "\\", ",", ".",
+ "〈", "〉", "《", "》", "」", "「", ""};
+ int i = 0;
+ while (kCharsToEx[i] != "") {
+ ids_to_exclude.push_back(
+ unicharset.unichar_to_id(kCharsToEx[i++].c_str()));
+ }
+ ids_to_exclude.sort();
+ }
+ return ids_to_exclude.bool_binary_search(id) ? BSTT_NONE : BSTT_MATH;
+ }
+
+ // Check if it is digit. In addition to the isdigit attribute, we also check
+ // if this character belongs to those likely to be confused with a digit.
+ static const STRING kDigitsChars = "|";
+ if (unicharset.get_isdigit(id) ||
+ (s.length() == 1 && kDigitsChars.contains(s[0]))) {
+ return BSTT_DIGIT;
+ } else {
+ return BSTT_MATH;
+ }
+}
+
+void EquationDetect::IdentifySpecialText() {
+ // Set configuration for Tesseract::AdaptiveClassifier.
+ equ_tesseract_.tess_cn_matching.set_value(1); // turn it on
+ equ_tesseract_.tess_bn_matching.set_value(0);
+
+ // Set the multiplier to zero for lang_tesseract_ to improve the accuracy.
+ const int classify_class_pruner = lang_tesseract_->classify_class_pruner_multiplier;
+ const int classify_integer_matcher =
+ lang_tesseract_->classify_integer_matcher_multiplier;
+ lang_tesseract_->classify_class_pruner_multiplier.set_value(0);
+ lang_tesseract_->classify_integer_matcher_multiplier.set_value(0);
+
+ ColPartitionGridSearch gsearch(part_grid_);
+ ColPartition *part = nullptr;
+ gsearch.StartFullSearch();
+ while ((part = gsearch.NextFullSearch()) != nullptr) {
+ if (!IsTextOrEquationType(part->type())) {
+ continue;
+ }
+ IdentifyBlobsToSkip(part);
+ BLOBNBOX_C_IT bbox_it(part->boxes());
+ // Compute the height threshold.
+ GenericVector<int> blob_heights;
+ for (bbox_it.mark_cycle_pt (); !bbox_it.cycled_list();
+ bbox_it.forward()) {
+ if (bbox_it.data()->special_text_type() != BSTT_SKIP) {
+ blob_heights.push_back(bbox_it.data()->bounding_box().height());
+ }
+ }
+ blob_heights.sort();
+ const int height_th = blob_heights[blob_heights.size() / 2] / 3 * 2;
+ for (bbox_it.mark_cycle_pt (); !bbox_it.cycled_list();
+ bbox_it.forward()) {
+ if (bbox_it.data()->special_text_type() != BSTT_SKIP) {
+ IdentifySpecialText(bbox_it.data(), height_th);
+ }
+ }
+ }
+
+ // Set the multiplier values back.
+ lang_tesseract_->classify_class_pruner_multiplier.set_value(
+ classify_class_pruner);
+ lang_tesseract_->classify_integer_matcher_multiplier.set_value(
+ classify_integer_matcher);
+
+ if (equationdetect_save_spt_image) { // For debug.
+ STRING outfile;
+ GetOutputTiffName("_spt", &outfile);
+ PaintSpecialTexts(outfile);
+ }
+}
+
+void EquationDetect::IdentifyBlobsToSkip(ColPartition* part) {
+ ASSERT_HOST(part);
+ BLOBNBOX_C_IT blob_it(part->boxes());
+
+ for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
+ // At this moment, no blob should have been joined.
+ ASSERT_HOST(!blob_it.data()->joined_to_prev());
+ }
+ for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
+ BLOBNBOX* blob = blob_it.data();
+ if (blob->joined_to_prev() || blob->special_text_type() == BSTT_SKIP) {
+ continue;
+ }
+ TBOX blob_box = blob->bounding_box();
+
+ // Search if any blob can be merged into blob. If found, then we mark all
+ // these blobs as BSTT_SKIP.
+ BLOBNBOX_C_IT blob_it2 = blob_it;
+ bool found = false;
+ while (!blob_it2.at_last()) {
+ BLOBNBOX* nextblob = blob_it2.forward();
+ const TBOX& nextblob_box = nextblob->bounding_box();
+ if (nextblob_box.left() >= blob_box.right()) {
+ break;
+ }
+ const float kWidthR = 0.4, kHeightR = 0.3;
+ const bool xoverlap = blob_box.major_x_overlap(nextblob_box),
+ yoverlap = blob_box.y_overlap(nextblob_box);
+ const float widthR = static_cast<float>(
+ std::min(nextblob_box.width(), blob_box.width())) /
+ std::max(nextblob_box.width(), blob_box.width());
+ const float heightR = static_cast<float>(
+ std::min(nextblob_box.height(), blob_box.height())) /
+ std::max(nextblob_box.height(), blob_box.height());
+
+ if (xoverlap && yoverlap && widthR > kWidthR && heightR > kHeightR) {
+ // Found one, set nextblob type and recompute blob_box.
+ found = true;
+ nextblob->set_special_text_type(BSTT_SKIP);
+ blob_box += nextblob_box;
+ }
+ }
+ if (found) {
+ blob->set_special_text_type(BSTT_SKIP);
+ }
+ }
+}
+
+int EquationDetect::FindEquationParts(
+ ColPartitionGrid* part_grid, ColPartitionSet** best_columns) {
+ if (!lang_tesseract_) {
+ tprintf("Warning: lang_tesseract_ is nullptr!\n");
+ return -1;
+ }
+ if (!part_grid || !best_columns) {
+ tprintf("part_grid/best_columns is nullptr!!\n");
+ return -1;
+ }
+ cp_seeds_.clear();
+ part_grid_ = part_grid;
+ best_columns_ = best_columns;
+ resolution_ = lang_tesseract_->source_resolution();
+ STRING outfile;
+ page_count_++;
+
+ if (equationdetect_save_bi_image) {
+ GetOutputTiffName("_bi", &outfile);
+ pixWrite(outfile.c_str(), lang_tesseract_->pix_binary(), IFF_TIFF_G4);
+ }
+
+ // Pass 0: Compute special text type for blobs.
+ IdentifySpecialText();
+
+ // Pass 1: Merge parts by overlap.
+ MergePartsByLocation();
+
+ // Pass 2: compute the math blob density and find the seed partition.
+ IdentifySeedParts();
+ // We still need separate seed into block seed and inline seed partition.
+ IdentifyInlineParts();
+
+ if (equationdetect_save_seed_image) {
+ GetOutputTiffName("_seed", &outfile);
+ PaintColParts(outfile);
+ }
+
+ // Pass 3: expand block equation seeds.
+ while (!cp_seeds_.empty()) {
+ GenericVector<ColPartition*> seeds_expanded;
+ for (int i = 0; i < cp_seeds_.size(); ++i) {
+ if (ExpandSeed(cp_seeds_[i])) {
+ // If this seed is expanded, then we add it into seeds_expanded. Note
+ // this seed has been removed from part_grid_ if it is expanded.
+ seeds_expanded.push_back(cp_seeds_[i]);
+ }
+ }
+ // Add seeds_expanded back into part_grid_ and reset cp_seeds_.
+ for (int i = 0; i < seeds_expanded.size(); ++i) {
+ InsertPartAfterAbsorb(seeds_expanded[i]);
+ }
+ cp_seeds_ = seeds_expanded;
+ }
+
+ // Pass 4: find math block satellite text partitions and merge them.
+ ProcessMathBlockSatelliteParts();
+
+ if (equationdetect_save_merged_image) { // For debug.
+ GetOutputTiffName("_merged", &outfile);
+ PaintColParts(outfile);
+ }
+
+ return 0;
+}
+
+void EquationDetect::MergePartsByLocation() {
+ while (true) {
+ ColPartition* part = nullptr;
+ // partitions that have been updated.
+ GenericVector<ColPartition*> parts_updated;
+ ColPartitionGridSearch gsearch(part_grid_);
+ gsearch.StartFullSearch();
+ while ((part = gsearch.NextFullSearch()) != nullptr) {
+ if (!IsTextOrEquationType(part->type())) {
+ continue;
+ }
+ GenericVector<ColPartition*> parts_to_merge;
+ SearchByOverlap(part, &parts_to_merge);
+ if (parts_to_merge.empty()) {
+ continue;
+ }
+
+ // Merge parts_to_merge with part, and remove them from part_grid_.
+ part_grid_->RemoveBBox(part);
+ for (int i = 0; i < parts_to_merge.size(); ++i) {
+ ASSERT_HOST(parts_to_merge[i] != nullptr && parts_to_merge[i] != part);
+ part->Absorb(parts_to_merge[i], nullptr);
+ }
+ gsearch.RepositionIterator();
+
+ parts_updated.push_back(part);
+ }
+
+ if (parts_updated.empty()) { // Exit the loop
+ break;
+ }
+
+ // Re-insert parts_updated into part_grid_.
+ for (int i = 0; i < parts_updated.size(); ++i) {
+ InsertPartAfterAbsorb(parts_updated[i]);
+ }
+ }
+}
+
+void EquationDetect::SearchByOverlap(
+ ColPartition* seed,
+ GenericVector<ColPartition*>* parts_overlap) {
+ ASSERT_HOST(seed != nullptr && parts_overlap != nullptr);
+ if (!IsTextOrEquationType(seed->type())) {
+ return;
+ }
+ ColPartitionGridSearch search(part_grid_);
+ const TBOX& seed_box(seed->bounding_box());
+ const int kRadNeighborCells = 30;
+ search.StartRadSearch((seed_box.left() + seed_box.right()) / 2,
+ (seed_box.top() + seed_box.bottom()) / 2,
+ kRadNeighborCells);
+ search.SetUniqueMode(true);
+
+ // Search iteratively.
+ ColPartition *part;
+ GenericVector<ColPartition*> parts;
+ const float kLargeOverlapTh = 0.95;
+ const float kEquXOverlap = 0.4, kEquYOverlap = 0.5;
+ while ((part = search.NextRadSearch()) != nullptr) {
+ if (part == seed || !IsTextOrEquationType(part->type())) {
+ continue;
+ }
+ const TBOX& part_box(part->bounding_box());
+ bool merge = false;
+
+ const float x_overlap_fraction = part_box.x_overlap_fraction(seed_box),
+ y_overlap_fraction = part_box.y_overlap_fraction(seed_box);
+
+ // If part is large overlapped with seed, then set merge to true.
+ if (x_overlap_fraction >= kLargeOverlapTh &&
+ y_overlap_fraction >= kLargeOverlapTh) {
+ merge = true;
+ } else if (seed->type() == PT_EQUATION &&
+ IsTextOrEquationType(part->type())) {
+ if ((x_overlap_fraction > kEquXOverlap && y_overlap_fraction > 0.0) ||
+ (x_overlap_fraction > 0.0 && y_overlap_fraction > kEquYOverlap)) {
+ merge = true;
+ }
+ }
+
+ if (merge) { // Remove the part from search and put it into parts.
+ search.RemoveBBox();
+ parts_overlap->push_back(part);
+ }
+ }
+}
+
+void EquationDetect::InsertPartAfterAbsorb(ColPartition* part) {
+ ASSERT_HOST(part);
+
+ // Before insert part back into part_grid_, we will need re-compute some
+ // of its attributes such as first_column_, last_column_. However, we still
+ // want to preserve its type.
+ BlobTextFlowType flow_type = part->flow();
+ PolyBlockType part_type = part->type();
+ BlobRegionType blob_type = part->blob_type();
+
+ // Call SetPartitionType to re-compute the attributes of part.
+ const TBOX& part_box(part->bounding_box());
+ int grid_x, grid_y;
+ part_grid_->GridCoords(
+ part_box.left(), part_box.bottom(), &grid_x, &grid_y);
+ part->SetPartitionType(resolution_, best_columns_[grid_y]);
+
+ // Reset the types back.
+ part->set_type(part_type);
+ part->set_blob_type(blob_type);
+ part->set_flow(flow_type);
+ part->SetBlobTypes();
+
+ // Insert into part_grid_.
+ part_grid_->InsertBBox(true, true, part);
+}
+
+void EquationDetect::IdentifySeedParts() {
+ ColPartitionGridSearch gsearch(part_grid_);
+ ColPartition *part = nullptr;
+ gsearch.StartFullSearch();
+
+ GenericVector<ColPartition*> seeds1, seeds2;
+ // The left coordinates of indented text partitions.
+ GenericVector<int> indented_texts_left;
+ // The foreground density of text partitions.
+ GenericVector<float> texts_foreground_density;
+ while ((part = gsearch.NextFullSearch()) != nullptr) {
+ if (!IsTextOrEquationType(part->type())) {
+ continue;
+ }
+ part->ComputeSpecialBlobsDensity();
+ const bool blobs_check = CheckSeedBlobsCount(part);
+ const int kTextBlobsTh = 20;
+
+ if (CheckSeedDensity(kMathDigitDensityTh1, kMathDigitDensityTh2, part) &&
+ blobs_check) {
+ // Passed high density threshold test, save into seeds1.
+ seeds1.push_back(part);
+ } else {
+ IndentType indent = IsIndented(part);
+ if (IsLeftIndented(indent) && blobs_check &&
+ CheckSeedDensity(kMathDigitDensityTh2, kMathDigitDensityTh2, part)) {
+ // Passed low density threshold test and is indented, save into seeds2.
+ seeds2.push_back(part);
+ } else if (!IsRightIndented(indent) &&
+ part->boxes_count() > kTextBlobsTh) {
+ // This is likely to be a text part, save the features.
+ const TBOX&box = part->bounding_box();
+ if (IsLeftIndented(indent)) {
+ indented_texts_left.push_back(box.left());
+ }
+ texts_foreground_density.push_back(ComputeForegroundDensity(box));
+ }
+ }
+ }
+
+ // Sort the features collected from text regions.
+ indented_texts_left.sort();
+ texts_foreground_density.sort();
+ float foreground_density_th = 0.15; // Default value.
+ if (!texts_foreground_density.empty()) {
+ // Use the median of the texts_foreground_density.
+ foreground_density_th = 0.8 * texts_foreground_density[
+ texts_foreground_density.size() / 2];
+ }
+
+ for (int i = 0; i < seeds1.size(); ++i) {
+ const TBOX& box = seeds1[i]->bounding_box();
+ if (CheckSeedFgDensity(foreground_density_th, seeds1[i]) &&
+ !(IsLeftIndented(IsIndented(seeds1[i])) &&
+ CountAlignment(indented_texts_left, box.left()) >=
+ kLeftIndentAlignmentCountTh)) {
+ // Mark as PT_EQUATION type.
+ seeds1[i]->set_type(PT_EQUATION);
+ cp_seeds_.push_back(seeds1[i]);
+ } else { // Mark as PT_INLINE_EQUATION type.
+ seeds1[i]->set_type(PT_INLINE_EQUATION);
+ }
+ }
+
+ for (int i = 0; i < seeds2.size(); ++i) {
+ if (CheckForSeed2(indented_texts_left, foreground_density_th, seeds2[i])) {
+ seeds2[i]->set_type(PT_EQUATION);
+ cp_seeds_.push_back(seeds2[i]);
+ }
+ }
+}
+
+float EquationDetect::ComputeForegroundDensity(const TBOX& tbox) {
+ Pix *pix_bi = lang_tesseract_->pix_binary();
+ const int pix_height = pixGetHeight(pix_bi);
+ Box* box = boxCreate(tbox.left(), pix_height - tbox.top(),
+ tbox.width(), tbox.height());
+ Pix *pix_sub = pixClipRectangle(pix_bi, box, nullptr);
+ l_float32 fract;
+ pixForegroundFraction(pix_sub, &fract);
+ pixDestroy(&pix_sub);
+ boxDestroy(&box);
+
+ return fract;
+}
+
+bool EquationDetect::CheckSeedFgDensity(const float density_th,
+ ColPartition* part) {
+ ASSERT_HOST(part);
+
+ // Split part horizontall, and check for each sub part.
+ GenericVector<TBOX> sub_boxes;
+ SplitCPHorLite(part, &sub_boxes);
+ float parts_passed = 0.0;
+ for (int i = 0; i < sub_boxes.size(); ++i) {
+ const float density = ComputeForegroundDensity(sub_boxes[i]);
+ if (density < density_th) {
+ parts_passed++;
+ }
+ }
+
+ // If most sub parts passed, then we return true.
+ const float kSeedPartRatioTh = 0.3;
+ bool retval = (parts_passed / sub_boxes.size() >= kSeedPartRatioTh);
+
+ return retval;
+}
+
+void EquationDetect::SplitCPHor(ColPartition* part,
+ GenericVector<ColPartition*>* parts_splitted) {
+ ASSERT_HOST(part && parts_splitted);
+ if (part->median_width() == 0 || part->boxes_count() == 0) {
+ return;
+ }
+
+ // Make a copy of part, and reset parts_splitted.
+ ColPartition* right_part = part->CopyButDontOwnBlobs();
+ parts_splitted->delete_data_pointers();
+ parts_splitted->clear();
+
+ const double kThreshold = part->median_width() * 3.0;
+ bool found_split = true;
+ while (found_split) {
+ found_split = false;
+ BLOBNBOX_C_IT box_it(right_part->boxes());
+ // Blobs are sorted left side first. If blobs overlap,
+ // the previous blob may have a "more right" right side.
+ // Account for this by always keeping the largest "right"
+ // so far.
+ int previous_right = INT32_MIN;
+
+ // Look for the next split in the partition.
+ for (box_it.mark_cycle_pt(); !box_it.cycled_list(); box_it.forward()) {
+ const TBOX& box = box_it.data()->bounding_box();
+ if (previous_right != INT32_MIN &&
+ box.left() - previous_right > kThreshold) {
+ // We have a split position. Split the partition in two pieces.
+ // Insert the left piece in the grid and keep processing the right.
+ const int mid_x = (box.left() + previous_right) / 2;
+ ColPartition* left_part = right_part;
+ right_part = left_part->SplitAt(mid_x);
+
+ parts_splitted->push_back(left_part);
+ left_part->ComputeSpecialBlobsDensity();
+ found_split = true;
+ break;
+ }
+
+ // The right side of the previous blobs.
+ previous_right = std::max(previous_right, static_cast<int>(box.right()));
+ }
+ }
+
+ // Add the last piece.
+ right_part->ComputeSpecialBlobsDensity();
+ parts_splitted->push_back(right_part);
+}
+
+void EquationDetect::SplitCPHorLite(ColPartition* part,
+ GenericVector<TBOX>* splitted_boxes) {
+ ASSERT_HOST(part && splitted_boxes);
+ splitted_boxes->clear();
+ if (part->median_width() == 0) {
+ return;
+ }
+
+ const double kThreshold = part->median_width() * 3.0;
+
+ // Blobs are sorted left side first. If blobs overlap,
+ // the previous blob may have a "more right" right side.
+ // Account for this by always keeping the largest "right"
+ // so far.
+ TBOX union_box;
+ int previous_right = INT32_MIN;
+ BLOBNBOX_C_IT box_it(part->boxes());
+ for (box_it.mark_cycle_pt(); !box_it.cycled_list(); box_it.forward()) {
+ const TBOX& box = box_it.data()->bounding_box();
+ if (previous_right != INT32_MIN &&
+ box.left() - previous_right > kThreshold) {
+ // We have a split position.
+ splitted_boxes->push_back(union_box);
+ previous_right = INT32_MIN;
+ }
+ if (previous_right == INT32_MIN) {
+ union_box = box;
+ } else {
+ union_box += box;
+ }
+ // The right side of the previous blobs.
+ previous_right = std::max(previous_right, static_cast<int>(box.right()));
+ }
+
+ // Add the last piece.
+ if (previous_right != INT32_MIN) {
+ splitted_boxes->push_back(union_box);
+ }
+}
+
+bool EquationDetect::CheckForSeed2(
+ const GenericVector<int>& indented_texts_left,
+ const float foreground_density_th,
+ ColPartition* part) {
+ ASSERT_HOST(part);
+ const TBOX& box = part->bounding_box();
+
+ // Check if it is aligned with any indented_texts_left.
+ if (!indented_texts_left.empty() &&
+ CountAlignment(indented_texts_left, box.left()) >=
+ kLeftIndentAlignmentCountTh) {
+ return false;
+ }
+
+ // Check the foreground density.
+ if (ComputeForegroundDensity(box) > foreground_density_th) {
+ return false;
+ }
+
+ return true;
+}
+
+int EquationDetect::CountAlignment(
+ const GenericVector<int>& sorted_vec, const int val) const {
+ if (sorted_vec.empty()) {
+ return 0;
+ }
+ const int kDistTh = static_cast<int>(roundf(0.03 * resolution_));
+ const int pos = sorted_vec.binary_search(val);
+ int count = 0;
+
+ // Search left side.
+ int index = pos;
+ while (index >= 0 && abs(val - sorted_vec[index--]) < kDistTh) {
+ count++;
+ }
+
+ // Search right side.
+ index = pos + 1;
+ while (index < sorted_vec.size() && sorted_vec[index++] - val < kDistTh) {
+ count++;
+ }
+
+ return count;
+}
+
+void EquationDetect::IdentifyInlineParts() {
+ ComputeCPsSuperBBox();
+ IdentifyInlinePartsHorizontal();
+ const int textparts_linespacing = EstimateTextPartLineSpacing();
+ IdentifyInlinePartsVertical(true, textparts_linespacing);
+ IdentifyInlinePartsVertical(false, textparts_linespacing);
+}
+
+void EquationDetect::ComputeCPsSuperBBox() {
+ ColPartitionGridSearch gsearch(part_grid_);
+ ColPartition *part = nullptr;
+ gsearch.StartFullSearch();
+ delete cps_super_bbox_;
+ cps_super_bbox_ = new TBOX();
+ while ((part = gsearch.NextFullSearch()) != nullptr) {
+ (*cps_super_bbox_) += part->bounding_box();
+ }
+}
+
+void EquationDetect::IdentifyInlinePartsHorizontal() {
+ ASSERT_HOST(cps_super_bbox_);
+ GenericVector<ColPartition*> new_seeds;
+ const int kMarginDiffTh = IntCastRounded(
+ 0.5 * lang_tesseract_->source_resolution());
+ const int kGapTh = static_cast<int>(roundf(
+ 1.0 * lang_tesseract_->source_resolution()));
+ ColPartitionGridSearch search(part_grid_);
+ search.SetUniqueMode(true);
+ // The center x coordinate of the cp_super_bbox_.
+ const int cps_cx = cps_super_bbox_->left() + cps_super_bbox_->width() / 2;
+ for (int i = 0; i < cp_seeds_.size(); ++i) {
+ ColPartition* part = cp_seeds_[i];
+ const TBOX& part_box(part->bounding_box());
+ const int left_margin = part_box.left() - cps_super_bbox_->left(),
+ right_margin = cps_super_bbox_->right() - part_box.right();
+ bool right_to_left;
+ if (left_margin + kMarginDiffTh < right_margin &&
+ left_margin < kMarginDiffTh) {
+ // part is left aligned, so we search if it has any right neighbor.
+ search.StartSideSearch(
+ part_box.right(), part_box.top(), part_box.bottom());
+ right_to_left = false;
+ } else if (left_margin > cps_cx) {
+ // part locates on the right half on image, so search if it has any left
+ // neighbor.
+ search.StartSideSearch(
+ part_box.left(), part_box.top(), part_box.bottom());
+ right_to_left = true;
+ } else { // part is not an inline equation.
+ new_seeds.push_back(part);
+ continue;
+ }
+ ColPartition* neighbor = nullptr;
+ bool side_neighbor_found = false;
+ while ((neighbor = search.NextSideSearch(right_to_left)) != nullptr) {
+ const TBOX& neighbor_box(neighbor->bounding_box());
+ if (!IsTextOrEquationType(neighbor->type()) ||
+ part_box.x_gap(neighbor_box) > kGapTh ||
+ !part_box.major_y_overlap(neighbor_box) ||
+ part_box.major_x_overlap(neighbor_box)) {
+ continue;
+ }
+ // We have found one. Set the side_neighbor_found flag.
+ side_neighbor_found = true;
+ break;
+ }
+ if (!side_neighbor_found) { // Mark part as PT_INLINE_EQUATION.
+ part->set_type(PT_INLINE_EQUATION);
+ } else {
+ // Check the geometric feature of neighbor.
+ const TBOX& neighbor_box(neighbor->bounding_box());
+ if (neighbor_box.width() > part_box.width() &&
+ neighbor->type() != PT_EQUATION) { // Mark as PT_INLINE_EQUATION.
+ part->set_type(PT_INLINE_EQUATION);
+ } else { // part is not an inline equation type.
+ new_seeds.push_back(part);
+ }
+ }
+ }
+
+ // Reset the cp_seeds_ using the new_seeds.
+ cp_seeds_ = new_seeds;
+}
+
+int EquationDetect::EstimateTextPartLineSpacing() {
+ ColPartitionGridSearch gsearch(part_grid_);
+
+ // Get the y gap between text partitions;
+ ColPartition *current = nullptr, *prev = nullptr;
+ gsearch.StartFullSearch();
+ GenericVector<int> ygaps;
+ while ((current = gsearch.NextFullSearch()) != nullptr) {
+ if (!PTIsTextType(current->type())) {
+ continue;
+ }
+ if (prev != nullptr) {
+ const TBOX &current_box = current->bounding_box();
+ const TBOX &prev_box = prev->bounding_box();
+ // prev and current should be x major overlap and non y overlap.
+ if (current_box.major_x_overlap(prev_box) &&
+ !current_box.y_overlap(prev_box)) {
+ int gap = current_box.y_gap(prev_box);
+ if (gap < std::min(current_box.height(), prev_box.height())) {
+ // The gap should be smaller than the height of the bounding boxes.
+ ygaps.push_back(gap);
+ }
+ }
+ }
+ prev = current;
+ }
+
+ if (ygaps.size() < 8) { // We do not have enough data.
+ return -1;
+ }
+
+ // Compute the line spacing from ygaps: use the mean of the first half.
+ ygaps.sort();
+ int spacing = 0, count;
+ for (count = 0; count < ygaps.size() / 2; count++) {
+ spacing += ygaps[count];
+ }
+ return spacing / count;
+}
+
+void EquationDetect::IdentifyInlinePartsVertical(
+ const bool top_to_bottom, const int textparts_linespacing) {
+ if (cp_seeds_.empty()) {
+ return;
+ }
+
+ // Sort cp_seeds_.
+ if (top_to_bottom) { // From top to bottom.
+ cp_seeds_.sort(&SortCPByTopReverse);
+ } else { // From bottom to top.
+ cp_seeds_.sort(&SortCPByBottom);
+ }
+
+ GenericVector<ColPartition*> new_seeds;
+ for (int i = 0; i < cp_seeds_.size(); ++i) {
+ ColPartition* part = cp_seeds_[i];
+ // If we sort cp_seeds_ from top to bottom, then for each cp_seeds_, we look
+ // for its top neighbors, so that if two/more inline regions are connected
+ // to each other, then we will identify the top one, and then use it to
+ // identify the bottom one.
+ if (IsInline(!top_to_bottom, textparts_linespacing, part)) {
+ part->set_type(PT_INLINE_EQUATION);
+ } else {
+ new_seeds.push_back(part);
+ }
+ }
+ cp_seeds_ = new_seeds;
+}
+
+bool EquationDetect::IsInline(const bool search_bottom,
+ const int textparts_linespacing,
+ ColPartition* part) {
+ ASSERT_HOST(part != nullptr);
+ // Look for its nearest vertical neighbor that hardly overlaps in y but
+ // largely overlaps in x.
+ ColPartitionGridSearch search(part_grid_);
+ ColPartition *neighbor = nullptr;
+ const TBOX& part_box(part->bounding_box());
+ const float kYGapRatioTh = 1.0;
+
+ if (search_bottom) {
+ search.StartVerticalSearch(part_box.left(), part_box.right(),
+ part_box.bottom());
+ } else {
+ search.StartVerticalSearch(part_box.left(), part_box.right(),
+ part_box.top());
+ }
+ search.SetUniqueMode(true);
+ while ((neighbor = search.NextVerticalSearch(search_bottom)) != nullptr) {
+ const TBOX& neighbor_box(neighbor->bounding_box());
+ if (part_box.y_gap(neighbor_box) > kYGapRatioTh *
+ std::min(part_box.height(), neighbor_box.height())) {
+ // Finished searching.
+ break;
+ }
+ if (!PTIsTextType(neighbor->type())) {
+ continue;
+ }
+
+ // Check if neighbor and part is inline similar.
+ const float kHeightRatioTh = 0.5;
+ const int kYGapTh = textparts_linespacing > 0 ?
+ textparts_linespacing + static_cast<int>(roundf(0.02 * resolution_)):
+ static_cast<int>(roundf(0.05 * resolution_)); // Default value.
+ if (part_box.x_overlap(neighbor_box) && // Location feature.
+ part_box.y_gap(neighbor_box) <= kYGapTh && // Line spacing.
+ // Geo feature.
+ static_cast<float>(std::min(part_box.height(), neighbor_box.height())) /
+ std::max(part_box.height(), neighbor_box.height()) > kHeightRatioTh) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool EquationDetect::CheckSeedBlobsCount(ColPartition* part) {
+ if (!part) {
+ return false;
+ }
+ const int kSeedMathBlobsCount = 2;
+ const int kSeedMathDigitBlobsCount = 5;
+
+ const int blobs = part->boxes_count(),
+ math_blobs = part->SpecialBlobsCount(BSTT_MATH),
+ digit_blobs = part->SpecialBlobsCount(BSTT_DIGIT);
+ if (blobs < kSeedBlobsCountTh || math_blobs <= kSeedMathBlobsCount ||
+ math_blobs + digit_blobs <= kSeedMathDigitBlobsCount) {
+ return false;
+ }
+
+ return true;
+}
+
+bool EquationDetect::CheckSeedDensity(
+ const float math_density_high,
+ const float math_density_low,
+ const ColPartition* part) const {
+ ASSERT_HOST(part);
+ float math_digit_density = part->SpecialBlobsDensity(BSTT_MATH)
+ + part->SpecialBlobsDensity(BSTT_DIGIT);
+ float italic_density = part->SpecialBlobsDensity(BSTT_ITALIC);
+ if (math_digit_density > math_density_high) {
+ return true;
+ }
+ if (math_digit_density + italic_density > kMathItalicDensityTh &&
+ math_digit_density > math_density_low) {
+ return true;
+ }
+
+ return false;
+}
+
+EquationDetect::IndentType EquationDetect::IsIndented(ColPartition* part) {
+ ASSERT_HOST(part);
+
+ ColPartitionGridSearch search(part_grid_);
+ ColPartition *neighbor = nullptr;
+ const TBOX& part_box(part->bounding_box());
+ const int kXGapTh = static_cast<int>(roundf(0.5 * resolution_));
+ const int kRadiusTh = static_cast<int>(roundf(3.0 * resolution_));
+ const int kYGapTh = static_cast<int>(roundf(0.5 * resolution_));
+
+ // Here we use a simple approximation algorithm: from the center of part, We
+ // perform the radius search, and check if we can find a neighboring partition
+ // that locates on the top/bottom left of part.
+ search.StartRadSearch((part_box.left() + part_box.right()) / 2,
+ (part_box.top() + part_box.bottom()) / 2, kRadiusTh);
+ search.SetUniqueMode(true);
+ bool left_indented = false, right_indented = false;
+ while ((neighbor = search.NextRadSearch()) != nullptr &&
+ (!left_indented || !right_indented)) {
+ if (neighbor == part) {
+ continue;
+ }
+ const TBOX& neighbor_box(neighbor->bounding_box());
+
+ if (part_box.major_y_overlap(neighbor_box) &&
+ part_box.x_gap(neighbor_box) < kXGapTh) {
+ // When this happens, it is likely part is a fragment of an
+ // over-segmented colpartition. So we return false.
+ return NO_INDENT;
+ }
+
+ if (!IsTextOrEquationType(neighbor->type())) {
+ continue;
+ }
+
+ // The neighbor should be above/below part, and overlap in x direction.
+ if (!part_box.x_overlap(neighbor_box) || part_box.y_overlap(neighbor_box)) {
+ continue;
+ }
+
+ if (part_box.y_gap(neighbor_box) < kYGapTh) {
+ const int left_gap = part_box.left() - neighbor_box.left();
+ const int right_gap = neighbor_box.right() - part_box.right();
+ if (left_gap > kXGapTh) {
+ left_indented = true;
+ }
+ if (right_gap > kXGapTh) {
+ right_indented = true;
+ }
+ }
+ }
+
+ if (left_indented && right_indented) {
+ return BOTH_INDENT;
+ }
+ if (left_indented) {
+ return LEFT_INDENT;
+ }
+ if (right_indented) {
+ return RIGHT_INDENT;
+ }
+ return NO_INDENT;
+}
+
+bool EquationDetect::ExpandSeed(ColPartition* seed) {
+ if (seed == nullptr || // This seed has been absorbed by other seeds.
+ seed->IsVerticalType()) { // We skip vertical type right now.
+ return false;
+ }
+
+ // Expand in four directions.
+ GenericVector<ColPartition*> parts_to_merge;
+ ExpandSeedHorizontal(true, seed, &parts_to_merge);
+ ExpandSeedHorizontal(false, seed, &parts_to_merge);
+ ExpandSeedVertical(true, seed, &parts_to_merge);
+ ExpandSeedVertical(false, seed, &parts_to_merge);
+ SearchByOverlap(seed, &parts_to_merge);
+
+ if (parts_to_merge.empty()) { // We don't find any partition to merge.
+ return false;
+ }
+
+ // Merge all partitions in parts_to_merge with seed. We first remove seed
+ // from part_grid_ as its bounding box is going to expand. Then we add it
+ // back after it absorbs all parts_to_merge partitions.
+ part_grid_->RemoveBBox(seed);
+ for (int i = 0; i < parts_to_merge.size(); ++i) {
+ ColPartition* part = parts_to_merge[i];
+ if (part->type() == PT_EQUATION) {
+ // If part is in cp_seeds_, then we mark it as nullptr so that we won't
+ // process it again.
+ for (int j = 0; j < cp_seeds_.size(); ++j) {
+ if (part == cp_seeds_[j]) {
+ cp_seeds_[j] = nullptr;
+ break;
+ }
+ }
+ }
+
+ // part has already been removed from part_grid_ in function
+ // ExpandSeedHorizontal/ExpandSeedVertical.
+ seed->Absorb(part, nullptr);
+ }
+
+ return true;
+}
+
+void EquationDetect::ExpandSeedHorizontal(
+ const bool search_left,
+ ColPartition* seed,
+ GenericVector<ColPartition*>* parts_to_merge) {
+ ASSERT_HOST(seed != nullptr && parts_to_merge != nullptr);
+ const float kYOverlapTh = 0.6;
+ const int kXGapTh = static_cast<int>(roundf(0.2 * resolution_));
+
+ ColPartitionGridSearch search(part_grid_);
+ const TBOX& seed_box(seed->bounding_box());
+ const int x = search_left ? seed_box.left() : seed_box.right();
+ search.StartSideSearch(x, seed_box.bottom(), seed_box.top());
+ search.SetUniqueMode(true);
+
+ // Search iteratively.
+ ColPartition *part = nullptr;
+ while ((part = search.NextSideSearch(search_left)) != nullptr) {
+ if (part == seed) {
+ continue;
+ }
+ const TBOX& part_box(part->bounding_box());
+ if (part_box.x_gap(seed_box) > kXGapTh) { // Out of scope.
+ break;
+ }
+
+ // Check part location.
+ if ((part_box.left() >= seed_box.left() && search_left) ||
+ (part_box.right() <= seed_box.right() && !search_left)) {
+ continue;
+ }
+
+ if (part->type() != PT_EQUATION) { // Non-equation type.
+ // Skip PT_LINLINE_EQUATION and non text type.
+ if (part->type() == PT_INLINE_EQUATION ||
+ (!IsTextOrEquationType(part->type()) &&
+ part->blob_type() != BRT_HLINE)) {
+ continue;
+ }
+ // For other types, it should be the near small neighbor of seed.
+ if (!IsNearSmallNeighbor(seed_box, part_box) ||
+ !CheckSeedNeighborDensity(part)) {
+ continue;
+ }
+ } else { // Equation type, check the y overlap.
+ if (part_box.y_overlap_fraction(seed_box) < kYOverlapTh &&
+ seed_box.y_overlap_fraction(part_box) < kYOverlapTh) {
+ continue;
+ }
+ }
+
+ // Passed the check, delete it from search and add into parts_to_merge.
+ search.RemoveBBox();
+ parts_to_merge->push_back(part);
+ }
+}
+
+void EquationDetect::ExpandSeedVertical(
+ const bool search_bottom,
+ ColPartition* seed,
+ GenericVector<ColPartition*>* parts_to_merge) {
+ ASSERT_HOST(seed != nullptr && parts_to_merge != nullptr &&
+ cps_super_bbox_ != nullptr);
+ const float kXOverlapTh = 0.4;
+ const int kYGapTh = static_cast<int>(roundf(0.2 * resolution_));
+
+ ColPartitionGridSearch search(part_grid_);
+ const TBOX& seed_box(seed->bounding_box());
+ const int y = search_bottom ? seed_box.bottom() : seed_box.top();
+ search.StartVerticalSearch(
+ cps_super_bbox_->left(), cps_super_bbox_->right(), y);
+ search.SetUniqueMode(true);
+
+ // Search iteratively.
+ ColPartition *part = nullptr;
+ GenericVector<ColPartition*> parts;
+ int skipped_min_top = std::numeric_limits<int>::max(), skipped_max_bottom = -1;
+ while ((part = search.NextVerticalSearch(search_bottom)) != nullptr) {
+ if (part == seed) {
+ continue;
+ }
+ const TBOX& part_box(part->bounding_box());
+
+ if (part_box.y_gap(seed_box) > kYGapTh) { // Out of scope.
+ break;
+ }
+
+ // Check part location.
+ if ((part_box.bottom() >= seed_box.bottom() && search_bottom) ||
+ (part_box.top() <= seed_box.top() && !search_bottom)) {
+ continue;
+ }
+
+ bool skip_part = false;
+ if (part->type() != PT_EQUATION) { // Non-equation type.
+ // Skip PT_LINLINE_EQUATION and non text type.
+ if (part->type() == PT_INLINE_EQUATION ||
+ (!IsTextOrEquationType(part->type()) &&
+ part->blob_type() != BRT_HLINE)) {
+ skip_part = true;
+ } else if (!IsNearSmallNeighbor(seed_box, part_box) ||
+ !CheckSeedNeighborDensity(part)) {
+ // For other types, it should be the near small neighbor of seed.
+ skip_part = true;
+ }
+ } else { // Equation type, check the x overlap.
+ if (part_box.x_overlap_fraction(seed_box) < kXOverlapTh &&
+ seed_box.x_overlap_fraction(part_box) < kXOverlapTh) {
+ skip_part = true;
+ }
+ }
+ if (skip_part) {
+ if (part->type() != PT_EQUATION) {
+ if (skipped_min_top > part_box.top()) {
+ skipped_min_top = part_box.top();
+ }
+ if (skipped_max_bottom < part_box.bottom()) {
+ skipped_max_bottom = part_box.bottom();
+ }
+ }
+ } else {
+ parts.push_back(part);
+ }
+ }
+
+ // For every part in parts, we need verify it is not above skipped_min_top
+ // when search top, or not below skipped_max_bottom when search bottom. I.e.,
+ // we will skip a part if it looks like:
+ // search bottom | search top
+ // seed: ****************** | part: **********
+ // skipped: xxx | skipped: xxx
+ // part: ********** | seed: ***********
+ for (int i = 0; i < parts.size(); i++) {
+ const TBOX& part_box(parts[i]->bounding_box());
+ if ((search_bottom && part_box.top() <= skipped_max_bottom) ||
+ (!search_bottom && part_box.bottom() >= skipped_min_top)) {
+ continue;
+ }
+ // Add parts[i] into parts_to_merge, and delete it from part_grid_.
+ parts_to_merge->push_back(parts[i]);
+ part_grid_->RemoveBBox(parts[i]);
+ }
+}
+
+bool EquationDetect::IsNearSmallNeighbor(const TBOX& seed_box,
+ const TBOX& part_box) const {
+ const int kXGapTh = static_cast<int>(roundf(0.25 * resolution_));
+ const int kYGapTh = static_cast<int>(roundf(0.05 * resolution_));
+
+ // Check geometric feature.
+ if (part_box.height() > seed_box.height() ||
+ part_box.width() > seed_box.width()) {
+ return false;
+ }
+
+ // Check overlap and distance.
+ if ((!part_box.major_x_overlap(seed_box) ||
+ part_box.y_gap(seed_box) > kYGapTh) &&
+ (!part_box.major_y_overlap(seed_box) ||
+ part_box.x_gap(seed_box) > kXGapTh)) {
+ return false;
+ }
+
+ return true;
+}
+
+bool EquationDetect::CheckSeedNeighborDensity(const ColPartition* part) const {
+ ASSERT_HOST(part);
+ if (part->boxes_count() < kSeedBlobsCountTh) {
+ // Too few blobs, skip the check.
+ return true;
+ }
+
+ // We check the math blobs density and the unclear blobs density.
+ if (part->SpecialBlobsDensity(BSTT_MATH) +
+ part->SpecialBlobsDensity(BSTT_DIGIT) > kMathDigitDensityTh1 ||
+ part->SpecialBlobsDensity(BSTT_UNCLEAR) > kUnclearDensityTh) {
+ return true;
+ }
+
+ return false;
+}
+
+void EquationDetect::ProcessMathBlockSatelliteParts() {
+ // Iterate over part_grid_, and find all parts that are text type but not
+ // equation type.
+ ColPartition *part = nullptr;
+ GenericVector<ColPartition*> text_parts;
+ ColPartitionGridSearch gsearch(part_grid_);
+ gsearch.StartFullSearch();
+ while ((part = gsearch.NextFullSearch()) != nullptr) {
+ if (part->type() == PT_FLOWING_TEXT || part->type() == PT_HEADING_TEXT) {
+ text_parts.push_back(part);
+ }
+ }
+ if (text_parts.empty()) {
+ return;
+ }
+
+ // Compute the medium height of the text_parts.
+ text_parts.sort(&SortCPByHeight);
+ const TBOX& text_box = text_parts[text_parts.size() / 2]->bounding_box();
+ int med_height = text_box.height();
+ if (text_parts.size() % 2 == 0 && text_parts.size() > 1) {
+ const TBOX& text_box =
+ text_parts[text_parts.size() / 2 - 1]->bounding_box();
+ med_height = static_cast<int>(roundf(
+ 0.5 * (text_box.height() + med_height)));
+ }
+
+ // Iterate every text_parts and check if it is a math block satellite.
+ for (int i = 0; i < text_parts.size(); ++i) {
+ const TBOX& text_box(text_parts[i]->bounding_box());
+ if (text_box.height() > med_height) {
+ continue;
+ }
+ GenericVector<ColPartition*> math_blocks;
+ if (!IsMathBlockSatellite(text_parts[i], &math_blocks)) {
+ continue;
+ }
+
+ // Found. merge text_parts[i] with math_blocks.
+ part_grid_->RemoveBBox(text_parts[i]);
+ text_parts[i]->set_type(PT_EQUATION);
+ for (int j = 0; j < math_blocks.size(); ++j) {
+ part_grid_->RemoveBBox(math_blocks[j]);
+ text_parts[i]->Absorb(math_blocks[j], nullptr);
+ }
+ InsertPartAfterAbsorb(text_parts[i]);
+ }
+}
+
+bool EquationDetect::IsMathBlockSatellite(
+ ColPartition* part, GenericVector<ColPartition*>* math_blocks) {
+ ASSERT_HOST(part != nullptr && math_blocks != nullptr);
+ math_blocks->clear();
+ const TBOX& part_box(part->bounding_box());
+ // Find the top/bottom nearest neighbor of part.
+ ColPartition *neighbors[2];
+ int y_gaps[2] = {std::numeric_limits<int>::max(), std::numeric_limits<int>::max()};
+ // The horizontal boundary of the neighbors.
+ int neighbors_left = std::numeric_limits<int>::max(), neighbors_right = 0;
+ for (int i = 0; i < 2; ++i) {
+ neighbors[i] = SearchNNVertical(i != 0, part);
+ if (neighbors[i]) {
+ const TBOX& neighbor_box = neighbors[i]->bounding_box();
+ y_gaps[i] = neighbor_box.y_gap(part_box);
+ if (neighbor_box.left() < neighbors_left) {
+ neighbors_left = neighbor_box.left();
+ }
+ if (neighbor_box.right() > neighbors_right) {
+ neighbors_right = neighbor_box.right();
+ }
+ }
+ }
+ if (neighbors[0] == neighbors[1]) {
+ // This happens when part is inside neighbor.
+ neighbors[1] = nullptr;
+ y_gaps[1] = std::numeric_limits<int>::max();
+ }
+
+ // Check if part is within [neighbors_left, neighbors_right].
+ if (part_box.left() < neighbors_left || part_box.right() > neighbors_right) {
+ return false;
+ }
+
+ // Get the index of the near one in neighbors.
+ int index = y_gaps[0] < y_gaps[1] ? 0 : 1;
+
+ // Check the near one.
+ if (IsNearMathNeighbor(y_gaps[index], neighbors[index])) {
+ math_blocks->push_back(neighbors[index]);
+ } else {
+ // If the near one failed the check, then we skip checking the far one.
+ return false;
+ }
+
+ // Check the far one.
+ index = 1 - index;
+ if (IsNearMathNeighbor(y_gaps[index], neighbors[index])) {
+ math_blocks->push_back(neighbors[index]);
+ }
+
+ return true;
+}
+
+ColPartition* EquationDetect::SearchNNVertical(
+ const bool search_bottom, const ColPartition* part) {
+ ASSERT_HOST(part);
+ ColPartition *nearest_neighbor = nullptr, *neighbor = nullptr;
+ const int kYGapTh = static_cast<int>(roundf(resolution_ * 0.5));
+
+ ColPartitionGridSearch search(part_grid_);
+ search.SetUniqueMode(true);
+ const TBOX& part_box(part->bounding_box());
+ int y = search_bottom ? part_box.bottom() : part_box.top();
+ search.StartVerticalSearch(part_box.left(), part_box.right(), y);
+ int min_y_gap = std::numeric_limits<int>::max();
+ while ((neighbor = search.NextVerticalSearch(search_bottom)) != nullptr) {
+ if (neighbor == part || !IsTextOrEquationType(neighbor->type())) {
+ continue;
+ }
+ const TBOX& neighbor_box(neighbor->bounding_box());
+ int y_gap = neighbor_box.y_gap(part_box);
+ if (y_gap > kYGapTh) { // Out of scope.
+ break;
+ }
+ if (!neighbor_box.major_x_overlap(part_box) ||
+ (search_bottom && neighbor_box.bottom() > part_box.bottom()) ||
+ (!search_bottom && neighbor_box.top() < part_box.top())) {
+ continue;
+ }
+ if (y_gap < min_y_gap) {
+ min_y_gap = y_gap;
+ nearest_neighbor = neighbor;
+ }
+ }
+
+ return nearest_neighbor;
+}
+
+bool EquationDetect::IsNearMathNeighbor(
+ const int y_gap, const ColPartition *neighbor) const {
+ if (!neighbor) {
+ return false;
+ }
+ const int kYGapTh = static_cast<int>(roundf(resolution_ * 0.1));
+ return neighbor->type() == PT_EQUATION && y_gap <= kYGapTh;
+}
+
+void EquationDetect::GetOutputTiffName(const char* name,
+ STRING* image_name) const {
+ ASSERT_HOST(image_name && name);
+ char page[50];
+ snprintf(page, sizeof(page), "%04d", page_count_);
+ *image_name = STRING(lang_tesseract_->imagebasename) + page + name + ".tif";
+}
+
+void EquationDetect::PaintSpecialTexts(const STRING& outfile) const {
+ Pix *pix = nullptr, *pixBi = lang_tesseract_->pix_binary();
+ pix = pixConvertTo32(pixBi);
+ ColPartitionGridSearch gsearch(part_grid_);
+ ColPartition* part = nullptr;
+ gsearch.StartFullSearch();
+ while ((part = gsearch.NextFullSearch()) != nullptr) {
+ BLOBNBOX_C_IT blob_it(part->boxes());
+ for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
+ RenderSpecialText(pix, blob_it.data());
+ }
+ }
+
+ pixWrite(outfile.c_str(), pix, IFF_TIFF_LZW);
+ pixDestroy(&pix);
+}
+
+void EquationDetect::PaintColParts(const STRING& outfile) const {
+ Pix *pix = pixConvertTo32(lang_tesseract_->BestPix());
+ ColPartitionGridSearch gsearch(part_grid_);
+ gsearch.StartFullSearch();
+ ColPartition* part = nullptr;
+ while ((part = gsearch.NextFullSearch()) != nullptr) {
+ const TBOX& tbox = part->bounding_box();
+ Box *box = boxCreate(tbox.left(), pixGetHeight(pix) - tbox.top(),
+ tbox.width(), tbox.height());
+ if (part->type() == PT_EQUATION) {
+ pixRenderBoxArb(pix, box, 5, 255, 0, 0);
+ } else if (part->type() == PT_INLINE_EQUATION) {
+ pixRenderBoxArb(pix, box, 5, 0, 255, 0);
+ } else {
+ pixRenderBoxArb(pix, box, 5, 0, 0, 255);
+ }
+ boxDestroy(&box);
+ }
+
+ pixWrite(outfile.c_str(), pix, IFF_TIFF_LZW);
+ pixDestroy(&pix);
+}
+
+void EquationDetect::PrintSpecialBlobsDensity(const ColPartition* part) const {
+ ASSERT_HOST(part);
+ TBOX box(part->bounding_box());
+ int h = pixGetHeight(lang_tesseract_->BestPix());
+ tprintf("Printing special blobs density values for ColParition (t=%d,b=%d) ",
+ h - box.top(), h - box.bottom());
+ box.print();
+ tprintf("blobs count = %d, density = ", part->boxes_count());
+ for (int i = 0; i < BSTT_COUNT; ++i) {
+ auto type = static_cast<BlobSpecialTextType>(i);
+ tprintf("%d:%f ", i, part->SpecialBlobsDensity(type));
+ }
+ tprintf("\n");
+}
+
+} // namespace tesseract