aboutsummaryrefslogtreecommitdiff
blob: e527b5e382cd53be2eda1bd16f330a0ffbfed5a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
// expression.cc -- expressions in linker scripts for gold

// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <string>

#include "elfcpp.h"
#include "parameters.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "script.h"
#include "script-c.h"

namespace gold
{

// This file holds the code which handles linker expressions.

// The dot symbol, which linker scripts refer to simply as ".",
// requires special treatment.  The dot symbol is set several times,
// section addresses will refer to it, output sections will change it,
// and it can be set based on the value of other symbols.  We simplify
// the handling by prohibiting setting the dot symbol to the value of
// a non-absolute symbol.

// When evaluating the value of an expression, we pass in a pointer to
// this struct, so that the expression evaluation can find the
// information it needs.

struct Expression::Expression_eval_info
{
  // The symbol table.
  const Symbol_table* symtab;
  // The layout--we use this to get section information.
  const Layout* layout;
  // Whether to check assertions.
  bool check_assertions;
  // Whether expressions can refer to the dot symbol.  The dot symbol
  // is only available within a SECTIONS clause.
  bool is_dot_available;
  // The current value of the dot symbol.
  uint64_t dot_value;
  // The section in which the dot symbol is defined; this is NULL if
  // it is absolute.
  Output_section* dot_section;
  // Points to where the section of the result should be stored.
  Output_section** result_section_pointer;
  // Pointer to where the alignment of the result should be stored.
  uint64_t* result_alignment_pointer;
};

// Evaluate an expression.

uint64_t
Expression::eval(const Symbol_table* symtab, const Layout* layout,
		 bool check_assertions)
{
  return this->eval_maybe_dot(symtab, layout, check_assertions,
			      false, 0, NULL, NULL, NULL);
}

// Evaluate an expression which may refer to the dot symbol.

uint64_t
Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
			  bool check_assertions, uint64_t dot_value,
			  Output_section* dot_section,
			  Output_section** result_section_pointer,
			  uint64_t* result_alignment_pointer)
{
  return this->eval_maybe_dot(symtab, layout, check_assertions, true,
			      dot_value, dot_section, result_section_pointer,
			      result_alignment_pointer);
}

// Evaluate an expression which may or may not refer to the dot
// symbol.

uint64_t
Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
			   bool check_assertions, bool is_dot_available,
			   uint64_t dot_value, Output_section* dot_section,
			   Output_section** result_section_pointer,
			   uint64_t* result_alignment_pointer)
{
  Expression_eval_info eei;
  eei.symtab = symtab;
  eei.layout = layout;
  eei.check_assertions = check_assertions;
  eei.is_dot_available = is_dot_available;
  eei.dot_value = dot_value;
  eei.dot_section = dot_section;

  // We assume the value is absolute, and only set this to a section
  // if we find a section relative reference.
  if (result_section_pointer != NULL)
    *result_section_pointer = NULL;
  eei.result_section_pointer = result_section_pointer;

  eei.result_alignment_pointer = result_alignment_pointer;

  return this->value(&eei);
}

// A number.

class Integer_expression : public Expression
{
 public:
  Integer_expression(uint64_t val)
    : val_(val)
  { }

  uint64_t
  value(const Expression_eval_info*)
  { return this->val_; }

  void
  print(FILE* f) const
  { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }

 private:
  uint64_t val_;
};

extern "C" Expression*
script_exp_integer(uint64_t val)
{
  return new Integer_expression(val);
}

// An expression whose value is the value of a symbol.

class Symbol_expression : public Expression
{
 public:
  Symbol_expression(const char* name, size_t length)
    : name_(name, length)
  { }

  uint64_t
  value(const Expression_eval_info*);

  void
  print(FILE* f) const
  { fprintf(f, "%s", this->name_.c_str()); }

 private:
  std::string name_;
};

uint64_t
Symbol_expression::value(const Expression_eval_info* eei)
{
  Symbol* sym = eei->symtab->lookup(this->name_.c_str());
  if (sym == NULL || !sym->is_defined())
    {
      gold_error(_("undefined symbol '%s' referenced in expression"),
		 this->name_.c_str());
      return 0;
    }

  if (eei->result_section_pointer != NULL)
    *eei->result_section_pointer = sym->output_section();

  if (parameters->target().get_size() == 32)
    return eei->symtab->get_sized_symbol<32>(sym)->value();
  else if (parameters->target().get_size() == 64)
    return eei->symtab->get_sized_symbol<64>(sym)->value();
  else
    gold_unreachable();
}

// An expression whose value is the value of the special symbol ".".
// This is only valid within a SECTIONS clause.

class Dot_expression : public Expression
{
 public:
  Dot_expression()
  { }

  uint64_t
  value(const Expression_eval_info*);

  void
  print(FILE* f) const
  { fprintf(f, "."); }
};

uint64_t
Dot_expression::value(const Expression_eval_info* eei)
{
  if (!eei->is_dot_available)
    {
      gold_error(_("invalid reference to dot symbol outside of "
		   "SECTIONS clause"));
      return 0;
    }
  if (eei->result_section_pointer != NULL)
    *eei->result_section_pointer = eei->dot_section;
  return eei->dot_value;
}

// A string.  This is either the name of a symbol, or ".".

extern "C" Expression*
script_exp_string(const char* name, size_t length)
{
  if (length == 1 && name[0] == '.')
    return new Dot_expression();
  else
    return new Symbol_expression(name, length);
}

// A unary expression.

class Unary_expression : public Expression
{
 public:
  Unary_expression(Expression* arg)
    : arg_(arg)
  { }

  ~Unary_expression()
  { delete this->arg_; }

 protected:
  uint64_t
  arg_value(const Expression_eval_info* eei,
	    Output_section** arg_section_pointer) const
  {
    return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
				      eei->check_assertions,
				      eei->is_dot_available,
				      eei->dot_value,
				      eei->dot_section,
				      arg_section_pointer,
				      eei->result_alignment_pointer);
  }

  void
  arg_print(FILE* f) const
  { this->arg_->print(f); }

 private:
  Expression* arg_;
};

// Handle unary operators.  We use a preprocessor macro as a hack to
// capture the C operator.

#define UNARY_EXPRESSION(NAME, OPERATOR)				\
  class Unary_ ## NAME : public Unary_expression			\
  {									\
  public:								\
    Unary_ ## NAME(Expression* arg)					\
      : Unary_expression(arg)						\
    { }									\
    									\
    uint64_t								\
    value(const Expression_eval_info* eei)				\
    {									\
      Output_section* arg_section;					\
      uint64_t ret = OPERATOR this->arg_value(eei, &arg_section);	\
      if (arg_section != NULL && parameters->options().relocatable())	\
	gold_warning(_("unary " #NAME " applied to section "		\
		       "relative value"));				\
      return ret;							\
    }									\
									\
    void								\
    print(FILE* f) const						\
    {									\
      fprintf(f, "(%s ", #OPERATOR);					\
      this->arg_print(f);						\
      fprintf(f, ")");							\
    }									\
  };									\
									\
  extern "C" Expression*						\
  script_exp_unary_ ## NAME(Expression* arg)				\
  {									\
      return new Unary_ ## NAME(arg);					\
  }

UNARY_EXPRESSION(minus, -)
UNARY_EXPRESSION(logical_not, !)
UNARY_EXPRESSION(bitwise_not, ~)

// A binary expression.

class Binary_expression : public Expression
{
 public:
  Binary_expression(Expression* left, Expression* right)
    : left_(left), right_(right)
  { }

  ~Binary_expression()
  {
    delete this->left_;
    delete this->right_;
  }

 protected:
  uint64_t
  left_value(const Expression_eval_info* eei,
	     Output_section** section_pointer,
	     uint64_t* alignment_pointer) const
  {
    return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
				       eei->check_assertions,
				       eei->is_dot_available,
				       eei->dot_value,
				       eei->dot_section,
				       section_pointer,
				       alignment_pointer);
  }

  uint64_t
  right_value(const Expression_eval_info* eei,
	      Output_section** section_pointer,
	      uint64_t* alignment_pointer) const
  {
    return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
					eei->check_assertions,
					eei->is_dot_available,
					eei->dot_value,
					eei->dot_section,
					section_pointer,
					alignment_pointer);
  }

  void
  left_print(FILE* f) const
  { this->left_->print(f); }

  void
  right_print(FILE* f) const
  { this->right_->print(f); }

  // This is a call to function FUNCTION_NAME.  Print it.  This is for
  // debugging.
  void
  print_function(FILE* f, const char* function_name) const
  {
    fprintf(f, "%s(", function_name);
    this->left_print(f);
    fprintf(f, ", ");
    this->right_print(f);
    fprintf(f, ")");
  }

 private:
  Expression* left_;
  Expression* right_;
};

// Handle binary operators.  We use a preprocessor macro as a hack to
// capture the C operator.  KEEP_LEFT means that if the left operand
// is section relative and the right operand is not, the result uses
// the same section as the left operand.  KEEP_RIGHT is the same with
// left and right swapped.  IS_DIV means that we need to give an error
// if the right operand is zero.  WARN means that we should warn if
// used on section relative values in a relocatable link.  We always
// warn if used on values in different sections in a relocatable link.

#define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
  class Binary_ ## NAME : public Binary_expression			\
  {									\
  public:								\
    Binary_ ## NAME(Expression* left, Expression* right)		\
      : Binary_expression(left, right)					\
    { }									\
									\
    uint64_t								\
    value(const Expression_eval_info* eei)				\
    {									\
      Output_section* left_section;					\
      uint64_t left_alignment = 0;					\
      uint64_t left = this->left_value(eei, &left_section,		\
				       &left_alignment);		\
      Output_section* right_section;					\
      uint64_t right_alignment = 0;					\
      uint64_t right = this->right_value(eei, &right_section,		\
					 &right_alignment);		\
      if (KEEP_RIGHT && left_section == NULL && right_section != NULL)	\
	{								\
	  if (eei->result_section_pointer != NULL)			\
	    *eei->result_section_pointer = right_section;		\
	  if (eei->result_alignment_pointer != NULL			\
	      && right_alignment > *eei->result_alignment_pointer)	\
	    *eei->result_alignment_pointer = right_alignment;		\
	}								\
      else if (KEEP_LEFT						\
	       && left_section != NULL					\
	       && right_section == NULL)				\
	{								\
	  if (eei->result_section_pointer != NULL)			\
	    *eei->result_section_pointer = left_section;		\
	  if (eei->result_alignment_pointer != NULL			\
	      && left_alignment > *eei->result_alignment_pointer)	\
	    *eei->result_alignment_pointer = left_alignment;		\
	}								\
      else if ((WARN || left_section != right_section)			\
	       && (left_section != NULL || right_section != NULL)	\
	       && parameters->options().relocatable())			\
	gold_warning(_("binary " #NAME " applied to section "		\
		       "relative value"));				\
      if (IS_DIV && right == 0)						\
	{								\
	  gold_error(_(#NAME " by zero"));				\
	  return 0;							\
	}								\
      return left OPERATOR right;					\
    }									\
									\
    void								\
    print(FILE* f) const						\
    {									\
      fprintf(f, "(");							\
      this->left_print(f);						\
      fprintf(f, " %s ", #OPERATOR);					\
      this->right_print(f);						\
      fprintf(f, ")");							\
    }									\
  };									\
									\
  extern "C" Expression*						\
  script_exp_binary_ ## NAME(Expression* left, Expression* right)	\
  {									\
    return new Binary_ ## NAME(left, right);				\
  }

BINARY_EXPRESSION(mult, *, false, false, false, true)
BINARY_EXPRESSION(div, /, false, false, true, true)
BINARY_EXPRESSION(mod, %, false, false, true, true)
BINARY_EXPRESSION(add, +, true, true, false, true)
BINARY_EXPRESSION(sub, -, true, false, false, false)
BINARY_EXPRESSION(lshift, <<, false, false, false, true)
BINARY_EXPRESSION(rshift, >>, false, false, false, true)
BINARY_EXPRESSION(eq, ==, false, false, false, false)
BINARY_EXPRESSION(ne, !=, false, false, false, false)
BINARY_EXPRESSION(le, <=, false, false, false, false)
BINARY_EXPRESSION(ge, >=, false, false, false, false)
BINARY_EXPRESSION(lt, <, false, false, false, false)
BINARY_EXPRESSION(gt, >, false, false, false, false)
BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
BINARY_EXPRESSION(logical_or, ||, false, false, false, true)

// A trinary expression.

class Trinary_expression : public Expression
{
 public:
  Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
    : arg1_(arg1), arg2_(arg2), arg3_(arg3)
  { }

  ~Trinary_expression()
  {
    delete this->arg1_;
    delete this->arg2_;
    delete this->arg3_;
  }

 protected:
  uint64_t
  arg1_value(const Expression_eval_info* eei,
	     Output_section** section_pointer) const
  {
    return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
				       eei->check_assertions,
				       eei->is_dot_available,
				       eei->dot_value,
				       eei->dot_section,
				       section_pointer,
				       NULL);
  }

  uint64_t
  arg2_value(const Expression_eval_info* eei,
	     Output_section** section_pointer,
	     uint64_t* alignment_pointer) const
  {
    return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
				       eei->check_assertions,
				       eei->is_dot_available,
				       eei->dot_value,
				       eei->dot_section,
				       section_pointer,
				       alignment_pointer);
  }

  uint64_t
  arg3_value(const Expression_eval_info* eei,
	     Output_section** section_pointer,
	     uint64_t* alignment_pointer) const
  {
    return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
				       eei->check_assertions,
				       eei->is_dot_available,
				       eei->dot_value,
				       eei->dot_section,
				       section_pointer,
				       alignment_pointer);
  }

  void
  arg1_print(FILE* f) const
  { this->arg1_->print(f); }

  void
  arg2_print(FILE* f) const
  { this->arg2_->print(f); }

  void
  arg3_print(FILE* f) const
  { this->arg3_->print(f); }

 private:
  Expression* arg1_;
  Expression* arg2_;
  Expression* arg3_;
};

// The conditional operator.

class Trinary_cond : public Trinary_expression
{
 public:
  Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
    : Trinary_expression(arg1, arg2, arg3)
  { }

  uint64_t
  value(const Expression_eval_info* eei)
  {
    Output_section* arg1_section;
    uint64_t arg1 = this->arg1_value(eei, &arg1_section);
    return (arg1
	    ? this->arg2_value(eei, eei->result_section_pointer,
			       eei->result_alignment_pointer)
	    : this->arg3_value(eei, eei->result_section_pointer,
			       eei->result_alignment_pointer));
  }

  void
  print(FILE* f) const
  {
    fprintf(f, "(");
    this->arg1_print(f);
    fprintf(f, " ? ");
    this->arg2_print(f);
    fprintf(f, " : ");
    this->arg3_print(f);
    fprintf(f, ")");
  }
};

extern "C" Expression*
script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
{
  return new Trinary_cond(arg1, arg2, arg3);
}

// Max function.

class Max_expression : public Binary_expression
{
 public:
  Max_expression(Expression* left, Expression* right)
    : Binary_expression(left, right)
  { }

  uint64_t
  value(const Expression_eval_info* eei)
  {
    Output_section* left_section;
    uint64_t left_alignment;
    uint64_t left = this->left_value(eei, &left_section, &left_alignment);
    Output_section* right_section;
    uint64_t right_alignment;
    uint64_t right = this->right_value(eei, &right_section, &right_alignment);
    if (left_section == right_section)
      {
	if (eei->result_section_pointer != NULL)
	  *eei->result_section_pointer = left_section;
      }
    else if ((left_section != NULL || right_section != NULL)
	     && parameters->options().relocatable())
      gold_warning(_("max applied to section relative value"));
    if (eei->result_alignment_pointer != NULL)
      {
	uint64_t ra = *eei->result_alignment_pointer;
	if (left > right)
	  ra = std::max(ra, left_alignment);
	else if (right > left)
	  ra = std::max(ra, right_alignment);
	else
	  ra = std::max(ra, std::max(left_alignment, right_alignment));
	*eei->result_alignment_pointer = ra;
      }
    return std::max(left, right);
  }

  void
  print(FILE* f) const
  { this->print_function(f, "MAX"); }
};

extern "C" Expression*
script_exp_function_max(Expression* left, Expression* right)
{
  return new Max_expression(left, right);
}

// Min function.

class Min_expression : public Binary_expression
{
 public:
  Min_expression(Expression* left, Expression* right)
    : Binary_expression(left, right)
  { }

  uint64_t
  value(const Expression_eval_info* eei)
  {
    Output_section* left_section;
    uint64_t left_alignment;
    uint64_t left = this->left_value(eei, &left_section, &left_alignment);
    Output_section* right_section;
    uint64_t right_alignment;
    uint64_t right = this->right_value(eei, &right_section, &right_alignment);
    if (left_section == right_section)
      {
	if (eei->result_section_pointer != NULL)
	  *eei->result_section_pointer = left_section;
      }
    else if ((left_section != NULL || right_section != NULL)
	     && parameters->options().relocatable())
      gold_warning(_("min applied to section relative value"));
    if (eei->result_alignment_pointer != NULL)
      {
	uint64_t ra = *eei->result_alignment_pointer;
	if (left < right)
	  ra = std::max(ra, left_alignment);
	else if (right < left)
	  ra = std::max(ra, right_alignment);
	else
	  ra = std::max(ra, std::max(left_alignment, right_alignment));
	*eei->result_alignment_pointer = ra;
      }
    return std::min(left, right);
  }

  void
  print(FILE* f) const
  { this->print_function(f, "MIN"); }
};

extern "C" Expression*
script_exp_function_min(Expression* left, Expression* right)
{
  return new Min_expression(left, right);
}

// Class Section_expression.  This is a parent class used for
// functions which take the name of an output section.

class Section_expression : public Expression
{
 public:
  Section_expression(const char* section_name, size_t section_name_len)
    : section_name_(section_name, section_name_len)
  { }

  uint64_t
  value(const Expression_eval_info*);

  void
  print(FILE* f) const
  { fprintf(f, "%s(%s)", this->function_name(), this->section_name_.c_str()); }

 protected:
  // The child class must implement this.
  virtual uint64_t
  value_from_output_section(const Expression_eval_info*,
			    Output_section*) = 0;

  // The child class must implement this.
  virtual uint64_t
  value_from_script_output_section(uint64_t address, uint64_t load_address,
                                   uint64_t addralign, uint64_t size) = 0;

  // The child class must implement this.
  virtual const char*
  function_name() const = 0;

 private:
  std::string section_name_;
};

uint64_t
Section_expression::value(const Expression_eval_info* eei)
{
  const char* section_name = this->section_name_.c_str();
  Output_section* os = eei->layout->find_output_section(section_name);
  if (os != NULL)
    return this->value_from_output_section(eei, os);

  uint64_t address;
  uint64_t load_address;
  uint64_t addralign;
  uint64_t size;
  const Script_options* ss = eei->layout->script_options();
  if (ss->saw_sections_clause())
    {
      if (ss->script_sections()->get_output_section_info(section_name,
                                                         &address,
                                                         &load_address,
                                                         &addralign,
                                                         &size))
        return this->value_from_script_output_section(address, load_address,
                                                      addralign, size);
    }

  gold_error("%s called on nonexistent output section '%s'",
             this->function_name(), section_name);
  return 0;
}

// ABSOLUTE function.

class Absolute_expression : public Unary_expression
{
 public:
  Absolute_expression(Expression* arg)
    : Unary_expression(arg)
  { }

  uint64_t
  value(const Expression_eval_info* eei)
  {
    uint64_t ret = this->arg_value(eei, NULL);
    // Force the value to be absolute.
    if (eei->result_section_pointer != NULL)
      *eei->result_section_pointer = NULL;
    return ret;
  }

  void
  print(FILE* f) const
  {
    fprintf(f, "ABSOLUTE(");
    this->arg_print(f);
    fprintf(f, ")");
  }
};

extern "C" Expression*
script_exp_function_absolute(Expression* arg)
{
  return new Absolute_expression(arg);
}

// ALIGN function.

class Align_expression : public Binary_expression
{
 public:
  Align_expression(Expression* left, Expression* right)
    : Binary_expression(left, right)
  { }

  uint64_t
  value(const Expression_eval_info* eei)
  {
    Output_section* align_section;
    uint64_t align = this->right_value(eei, &align_section, NULL);
    if (align_section != NULL
	&& parameters->options().relocatable())
      gold_warning(_("aligning to section relative value"));

    if (eei->result_alignment_pointer != NULL
	&& align > *eei->result_alignment_pointer)
      {
	uint64_t a = align;
	while ((a & (a - 1)) != 0)
	  a &= a - 1;
	*eei->result_alignment_pointer = a;
      }

    uint64_t value = this->left_value(eei, eei->result_section_pointer, NULL);
    if (align <= 1)
      return value;
    return ((value + align - 1) / align) * align;
  }

  void
  print(FILE* f) const
  { this->print_function(f, "ALIGN"); }
};

extern "C" Expression*
script_exp_function_align(Expression* left, Expression* right)
{
  return new Align_expression(left, right);
}

// ASSERT function.

class Assert_expression : public Unary_expression
{
 public:
  Assert_expression(Expression* arg, const char* message, size_t length)
    : Unary_expression(arg), message_(message, length)
  { }

  uint64_t
  value(const Expression_eval_info* eei)
  {
    uint64_t value = this->arg_value(eei, eei->result_section_pointer);
    if (!value && eei->check_assertions)
      gold_error("%s", this->message_.c_str());
    return value;
  }

  void
  print(FILE* f) const
  {
    fprintf(f, "ASSERT(");
    this->arg_print(f);
    fprintf(f, ", %s)", this->message_.c_str());
  }

 private:
  std::string message_;
};

extern "C" Expression*
script_exp_function_assert(Expression* expr, const char* message,
			   size_t length)
{
  return new Assert_expression(expr, message, length);
}

// ADDR function.

class Addr_expression : public Section_expression
{
 public:
  Addr_expression(const char* section_name, size_t section_name_len)
    : Section_expression(section_name, section_name_len)
  { }

 protected:
  uint64_t
  value_from_output_section(const Expression_eval_info* eei,
			    Output_section* os)
  {
    if (eei->result_section_pointer != NULL)
      *eei->result_section_pointer = os;
    return os->address();
  }

  uint64_t
  value_from_script_output_section(uint64_t address, uint64_t, uint64_t,
                                   uint64_t)
  { return address; }

  const char*
  function_name() const
  { return "ADDR"; }
};

extern "C" Expression*
script_exp_function_addr(const char* section_name, size_t section_name_len)
{
  return new Addr_expression(section_name, section_name_len);
}

// ALIGNOF.

class Alignof_expression : public Section_expression
{
 public:
  Alignof_expression(const char* section_name, size_t section_name_len)
    : Section_expression(section_name, section_name_len)
  { }

 protected:
  uint64_t
  value_from_output_section(const Expression_eval_info*,
			    Output_section* os)
  { return os->addralign(); }

  uint64_t
  value_from_script_output_section(uint64_t, uint64_t, uint64_t addralign,
                                   uint64_t)
  { return addralign; }

  const char*
  function_name() const
  { return "ALIGNOF"; }
};

extern "C" Expression*
script_exp_function_alignof(const char* section_name, size_t section_name_len)
{
  return new Alignof_expression(section_name, section_name_len);
}

// CONSTANT.  It would be nice if we could simply evaluate this
// immediately and return an Integer_expression, but unfortunately we
// don't know the target.

class Constant_expression : public Expression
{
 public:
  Constant_expression(const char* name, size_t length);

  uint64_t
  value(const Expression_eval_info*);

  void
  print(FILE* f) const;

 private:
  enum Constant_function
  {
    CONSTANT_MAXPAGESIZE,
    CONSTANT_COMMONPAGESIZE
  };

  Constant_function function_;
};

Constant_expression::Constant_expression(const char* name, size_t length)
{
  if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
    this->function_ = CONSTANT_MAXPAGESIZE;
  else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
    this->function_ = CONSTANT_COMMONPAGESIZE;
  else
    {
      std::string s(name, length);
      gold_error(_("unknown constant %s"), s.c_str());
      this->function_ = CONSTANT_MAXPAGESIZE;
    }
}

uint64_t
Constant_expression::value(const Expression_eval_info*)
{
  switch (this->function_)
    {
    case CONSTANT_MAXPAGESIZE:
      return parameters->target().abi_pagesize();
    case CONSTANT_COMMONPAGESIZE:
      return parameters->target().common_pagesize();
    default:
      gold_unreachable();
    }
}

void
Constant_expression::print(FILE* f) const
{
  const char* name;
  switch (this->function_)
    {
    case CONSTANT_MAXPAGESIZE:
      name = "MAXPAGESIZE";
      break;
    case CONSTANT_COMMONPAGESIZE:
      name = "COMMONPAGESIZE";
      break;
    default:
      gold_unreachable();
    }
  fprintf(f, "CONSTANT(%s)", name);
}
  
extern "C" Expression*
script_exp_function_constant(const char* name, size_t length)
{
  return new Constant_expression(name, length);
}

// DATA_SEGMENT_ALIGN.  FIXME: we don't implement this; we always fall
// back to the general case.

extern "C" Expression*
script_exp_function_data_segment_align(Expression* left, Expression*)
{
  Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
  Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
  Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
						 e2);
  return script_exp_binary_add(e1, e3);
}

// DATA_SEGMENT_RELRO.  FIXME: This is not implemented.

extern "C" Expression*
script_exp_function_data_segment_relro_end(Expression*, Expression* right)
{
  return right;
}

// DATA_SEGMENT_END.  FIXME: This is not implemented.

extern "C" Expression*
script_exp_function_data_segment_end(Expression* val)
{
  return val;
}

// DEFINED function.

class Defined_expression : public Expression
{
 public:
  Defined_expression(const char* symbol_name, size_t symbol_name_len)
    : symbol_name_(symbol_name, symbol_name_len)
  { }

  uint64_t
  value(const Expression_eval_info* eei)
  {
    Symbol* sym = eei->symtab->lookup(this->symbol_name_.c_str());
    return sym != NULL && sym->is_defined();
  }

  void
  print(FILE* f) const
  { fprintf(f, "DEFINED(%s)", this->symbol_name_.c_str()); }

 private:
  std::string symbol_name_;
};

extern "C" Expression*
script_exp_function_defined(const char* symbol_name, size_t symbol_name_len)
{
  return new Defined_expression(symbol_name, symbol_name_len);
}

// LOADADDR function

class Loadaddr_expression : public Section_expression
{
 public:
  Loadaddr_expression(const char* section_name, size_t section_name_len)
    : Section_expression(section_name, section_name_len)
  { }

 protected:
  uint64_t
  value_from_output_section(const Expression_eval_info* eei,
			    Output_section* os)
  {
    if (os->has_load_address())
      return os->load_address();
    else
      {
	if (eei->result_section_pointer != NULL)
	  *eei->result_section_pointer = os;
	return os->address();
      }
  }

  uint64_t
  value_from_script_output_section(uint64_t, uint64_t load_address, uint64_t,
                                   uint64_t)
  { return load_address; }

  const char*
  function_name() const
  { return "LOADADDR"; }
};

extern "C" Expression*
script_exp_function_loadaddr(const char* section_name, size_t section_name_len)
{
  return new Loadaddr_expression(section_name, section_name_len);
}

// SIZEOF function

class Sizeof_expression : public Section_expression
{
 public:
  Sizeof_expression(const char* section_name, size_t section_name_len)
    : Section_expression(section_name, section_name_len)
  { }

 protected:
  uint64_t
  value_from_output_section(const Expression_eval_info*,
			    Output_section* os)
  {
    // We can not use data_size here, as the size of the section may
    // not have been finalized.  Instead we get whatever the current
    // size is.  This will work correctly for backward references in
    // linker scripts.
    return os->current_data_size();
  }

  uint64_t
  value_from_script_output_section(uint64_t, uint64_t, uint64_t,
                                   uint64_t size)
  { return size; }

  const char*
  function_name() const
  { return "SIZEOF"; }
};

extern "C" Expression*
script_exp_function_sizeof(const char* section_name, size_t section_name_len)
{
  return new Sizeof_expression(section_name, section_name_len);
}

// SIZEOF_HEADERS.

class Sizeof_headers_expression : public Expression
{
 public:
  Sizeof_headers_expression()
  { }

  uint64_t
  value(const Expression_eval_info*);

  void
  print(FILE* f) const
  { fprintf(f, "SIZEOF_HEADERS"); }
};

uint64_t
Sizeof_headers_expression::value(const Expression_eval_info* eei)
{
  unsigned int ehdr_size;
  unsigned int phdr_size;
  if (parameters->target().get_size() == 32)
    {
      ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
      phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
    }
  else if (parameters->target().get_size() == 64)
    {
      ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
      phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
    }
  else
    gold_unreachable();

  return ehdr_size + phdr_size * eei->layout->expected_segment_count();
}

extern "C" Expression*
script_exp_function_sizeof_headers()
{
  return new Sizeof_headers_expression();
}

// SEGMENT_START.

class Segment_start_expression : public Unary_expression
{
 public:
  Segment_start_expression(const char* segment_name, size_t segment_name_len,
			   Expression* default_value)
    : Unary_expression(default_value),
      segment_name_(segment_name, segment_name_len)
  { }

  uint64_t
  value(const Expression_eval_info*);

  void
  print(FILE* f) const
  {
    fprintf(f, "SEGMENT_START(\"%s\", ", this->segment_name_.c_str());
    this->arg_print(f);
    fprintf(f, ")");
  }

 private:
  std::string segment_name_;
};

uint64_t
Segment_start_expression::value(const Expression_eval_info* eei)
{
  // Check for command line overrides.
  if (parameters->options().user_set_Ttext()
      && this->segment_name_ == ".text")
    return parameters->options().Ttext();
  else if (parameters->options().user_set_Tdata()
	   && this->segment_name_ == ".data")
    return parameters->options().Tdata();
  else if (parameters->options().user_set_Tbss()
	   && this->segment_name_ == ".bss")
    return parameters->options().Tbss();
  else
    {
      uint64_t ret = this->arg_value(eei, NULL);
      // Force the value to be absolute.
      if (eei->result_section_pointer != NULL)
        *eei->result_section_pointer = NULL;
      return ret;
    }
}

extern "C" Expression*
script_exp_function_segment_start(const char* segment_name,
				  size_t segment_name_len,
				  Expression* default_value)
{
  return new Segment_start_expression(segment_name, segment_name_len,
				      default_value);
}

} // End namespace gold.