
Package Manager Specification

Stephen P. Bennett
spb@exherbo.org

Christian Faulhammer
fauli@gentoo.org

Ciaran McCreesh
ciaran.mccreesh@googlemail.com

Ulrich Müller
ulm@gentoo.org

13th November 2015

mailto:spb@exherbo.org
mailto:fauli@gentoo.org
mailto:ciaran.mccreesh@googlemail.com
mailto:ulm@gentoo.org

Contents

1 Introduction 10
1.1 Aims and Motivation . 10
1.2 Rationale . 10
1.3 Conventions . 10

2 EAPIs 11
2.1 Definition . 11
2.2 Defined EAPIs . 11
2.3 Reserved EAPIs . 11

3 Names and Versions 12
3.1 Restrictions upon Names . 12

3.1.1 Category Names . 12
3.1.2 Package Names . 12
3.1.3 Slot Names . 12
3.1.4 USE Flag Names . 12
3.1.5 Repository Names . 13
3.1.6 Keyword Names . 13
3.1.7 EAPI Names . 13

3.2 Version Specifications . 13
3.3 Version Comparison . 13
3.4 Uniqueness of versions . 13

4 Tree Layout 16
4.1 Top Level . 16
4.2 Category Directories . 16
4.3 Package Directories . 17
4.4 The Profiles Directory . 17

4.4.1 The profiles.desc file . 18
4.4.2 The thirdpartymirrors file . 18
4.4.3 use.desc and related files . 18
4.4.4 The updates directory . 19

4.5 The Licenses Directory . 19
4.6 The Eclass Directory . 19
4.7 The Metadata Directory . 19

4.7.1 The metadata cache . 19

5 Profiles 20
5.1 General principles . 20
5.2 Files that make up a profile . 20

5.2.1 The parent file . 20
5.2.2 The eapi file . 20
5.2.3 deprecated . 21
5.2.4 make.defaults . 21
5.2.5 Simple line-based files . 21
5.2.6 packages . 21

2

CONTENTS 3

5.2.7 packages.build . 21
5.2.8 package.mask . 21
5.2.9 package.provided . 22
5.2.10 package.use . 22
5.2.11 USE masking and forcing . 22

5.3 Profile variables . 24
5.3.1 Incremental Variables . 24
5.3.2 Specific variables and their meanings . 24

6 Ebuild File Format 26

7 Ebuild-defined Variables 27
7.1 Metadata invariance . 27
7.2 Mandatory Ebuild-defined Variables . 27
7.3 Optional Ebuild-defined Variables . 27

7.3.1 EAPI . 28
7.3.2 Keywords . 29
7.3.3 RDEPEND value . 29

7.4 Magic Ebuild-defined Variables . 29

8 Dependencies 31
8.1 Dependency Classes . 31
8.2 Dependency Specification Format . 31

8.2.1 All-of Dependency Specifications . 32
8.2.2 Use-conditional Dependency Specifications 33
8.2.3 Any-of Dependency Specifications . 33
8.2.4 Exactly-one-of Dependency Specifications 33
8.2.5 At-most-one-of Dependency Specifications 33
8.2.6 Package Dependency Specifications . 33
8.2.7 Use State Constraints . 36
8.2.8 Restrict . 36
8.2.9 Properties . 36
8.2.10 SRC_URI . 36

9 Ebuild-defined Functions 37
9.1 List of Functions . 37

9.1.1 Initial Working Directories . 37
9.1.2 pkg_pretend . 37
9.1.3 pkg_setup . 38
9.1.4 src_unpack . 38
9.1.5 src_prepare . 38
9.1.6 src_configure . 39
9.1.7 src_compile . 39
9.1.8 src_test . 40
9.1.9 src_install . 41
9.1.10 pkg_preinst . 42
9.1.11 pkg_postinst . 42
9.1.12 pkg_prerm . 42
9.1.13 pkg_postrm . 42
9.1.14 pkg_config . 42
9.1.15 pkg_info . 42
9.1.16 pkg_nofetch . 43
9.1.17 default_ Phase Functions . 43

9.2 Call Order . 43

10 Eclasses 45
10.1 The inherit command . 45
10.2 Eclass-defined Metadata Keys . 45
10.3 EXPORT_FUNCTIONS . 45

CONTENTS 4

11 The Ebuild Environment 47
11.1 Defined Variables . 47

11.1.1 USE and IUSE Handling . 51
11.1.2 REPLACING_VERSIONS and REPLACED_BY_VERSION 52
11.1.3 Offset-prefix variables EPREFIX, EROOT and ED 52

11.2 The state of variables between functions . 53
11.3 Available commands . 54

11.3.1 System commands . 54
11.3.2 Commands provided by package dependencies 54
11.3.3 Ebuild-specific Commands . 54

11.4 The state of the system between functions . 68

12 Merging and Unmerging 70
12.1 Overview . 70
12.2 Directories . 70

12.2.1 Permissions . 70
12.2.2 Empty Directories . 70

12.3 Regular Files . 71
12.3.1 Permissions . 71
12.3.2 File modification times . 71
12.3.3 Configuration File Protection . 71

12.4 Symlinks . 72
12.4.1 Rewriting . 72

12.5 Hard links . 72
12.6 Other Files . 72

13 Metadata Cache 73
13.1 Directory Contents . 73
13.2 Cache File Format . 73

14 Glossary 74

Bibliography 75

A metadata.xml 76

B Unspecified Items 77

C Historical Curiosities 78
C.1 If-else use blocks . 78
C.2 cvs Versions . 78
C.3 use.defaults . 78
C.4 Old-style Virtuals . 79

D Feature Availability by EAPI 80

E Differences Between EAPIs 84

F Desk Reference 87

List of Algorithms

3.1 Version comparison top-level logic . 13
3.2 Version comparison logic for numeric components 14
3.3 Version comparison logic for each numeric component after the first 14
3.4 Version comparison logic for letter components . 14
3.5 Version comparison logic for suffixes . 15
3.6 Version comparison logic for each suffix . 15
3.7 Version comparison logic for revision components 15
5.1 USE masking logic . 23
11.1 eapply logic . 57
11.2 econf --libdir logic . 59
11.3 Determining the library directory . 61
11.4 einstalldocs logic . 67
11.5 get_libdir logic . 68

5

List of Listings

9.1 src_unpack . 38
9.2 src_prepare, format 6 . 39
9.3 src_configure . 39
9.4 src_compile, format 0 . 40
9.5 src_compile, format 1 . 40
9.6 src_compile, format 2 . 40
9.7 src_install, format 4 . 41
9.8 src_install, format 6 . 41
10.1 EXPORT_FUNCTIONS example: foo.eclass . 46
11.1 Environment state between functions . 53
11.2 einstall command . 59
C.1 If-else use blocks . 78

6

List of Tables

5.1 Profile directory support for masking/forcing use flags in stable versions only 22
5.2 Profile-defined IUSE injection for EAPIs . 24

6.1 Bash version . 26

7.1 EAPIs supporting IUSE defaults . 28
7.2 EAPIs supporting various ebuild-defined variables 28
7.3 EAPIs with RDEPEND=DEPEND Default . 29
7.4 EAPIs supporting DEFINED_PHASES . 30

8.1 Dependency classes required to be satisfied for a particular phase function 32
8.2 EAPIs supporting SRC_URI arrows . 32
8.3 EAPIs supporting REQUIRED_USE ?? groups . 32
8.4 Support for SLOT dependencies and sub-slots in EAPIs 34
8.5 EAPIs supporting USE dependencies . 34
8.6 Exclamation mark strengths for EAPIs . 34

9.1 EAPIs with S to WORKDIR fallbacks . 38
9.2 EAPIs supporting pkg_pretend . 38
9.3 src_prepare support and behaviour for EAPIs 39
9.4 EAPIs supporting src_configure . 39
9.5 src_compile behaviour for EAPIs . 40
9.6 src_test behaviour for EAPIs . 41
9.7 src_install behaviour for EAPIs . 41
9.8 EAPIs supporting pkg_info on non-installed packages 43
9.9 EAPIs supporting default_ phase functions . 43

11.1 Defined variables . 48
11.2 EAPIs supporting various added env variables . 51
11.3 EAPIs supporting various removed env variables 51
11.4 EAPIs supporting offset-prefix env variables . 51
11.5 Locale settings for EAPIs . 52
11.6 EAPIs supporting offset-prefix . 53
11.7 System commands for EAPIs . 54
11.8 EAPI Command Failure Behaviour . 55
11.9 Banned commands . 55
11.10 EAPIs supporting -n for die and assert commands 57
11.11 Patch commands for EAPIs . 58
11.12 Extra econf arguments for EAPIs . 58
11.13 EAPIs supporting dodoc -r . 62
11.14 EAPIs supporting doheader and newheader . 62
11.15 EAPIs supporting symlinks for doins . 63
11.16 doman language support options for EAPIs . 63
11.17 EAPIs supporting stdin for new* commands . 63
11.18 EAPIs supporting --host-root for *_version commands 64
11.19 EAPIs supporting controllable compression . 64
11.20 EAPI Behaviour for Use Queries not in IUSE_EFFECTIVE 65

7

LIST OF TABLES 8

11.21 EAPIs supporting empty third argument in use_with and use_enable 65
11.22 EAPIs supporting usex and in_iuse . 65
11.23 unpack behaviour for EAPIs . 67
11.24 unpack extensions for EAPIs . 67
11.25 Misc commands for EAPIs . 68

12.1 Preservation of file modification times (mtimes) 71

D.1 Features in EAPIs . 81

LIST OF TABLES 9

Acknowledgements

Thanks to Mike Kelly (package manager provided utilities, section 11.3.3), Danny van Dyk (ebuild
functions, section 9), David Leverton (various sections), Petteri Räty (environment state, sec-
tion 11.2) and Michał Górny (various sections) for contributions. Thanks also to Mike Frysinger
and Brian Harring for proof-reading and suggestions for fixes and/or clarification.

Copyright and Licence

The bulk of this document is c© 2007, 2008, 2009 Stephen Bennett and Ciaran McCreesh. Con-
tributions are owned by their respective authors, and may have been changed substantially before
inclusion.

This document is released under the Creative Commons Attribution-Share Alike 3.0 Licence. The
full text of this licence can be found at http://creativecommons.org/licenses/by-sa/3.0/.

Reporting Issues

Issues (inaccuracies, wording problems, omissions etc.) in this document should be reported via Gen-
too Bugzilla using product Gentoo Hosted Projects, component PMS/EAPI and the default assignee.
There should be one bug per issue, and one issue per bug.

Patches (in git format-patch form if possible) may be submitted either via Bugzilla or to the
gentoo-pms@lists.gentoo.org mailing list. Patches will be reviewed by the PMS team, who
will do one of the following:

• Accept and apply the patch.
• Explain why the patch cannot be applied as-is. The patch may then be updated and resubmitted

if appropriate.
• Reject the patch outright.
• Take special action merited by the individual circumstances.

When reporting issues, remember that this document is not the appropriate place for pushing through
changes to the tree or the package manager, except where those changes are bugs.

If any issue cannot be resolved by the PMS team, it may be escalated to the Gentoo Council.

http://creativecommons.org/licenses/by-sa/3.0/

Chapter 1

Introduction

1.1 Aims and Motivation

This document aims to fully describe the format of an ebuild repository and the ebuilds therein, as
well as certain aspects of package manager behaviour required to support such a repository.

This document is not designed to be an introduction to ebuild development. Prior knowledge of
ebuild creation and an understanding of how the package management system works is assumed;
certain less familiar terms are explained in the Glossary in chapter 14.

This document does not specify any user or package manager configuration information.

1.2 Rationale

At present the only definition of what an ebuild can assume about its environment, and the only
definition of what is valid in an ebuild, is the source code of the latest Portage release and a general
consensus about which features are too new to assume availability. This has several drawbacks: not
only is it impossible to change any aspect of Portage behaviour without verifying that nothing in
the tree relies upon it, but if a new package manager should appear it becomes impossible to fully
support such an ill-defined standard.

This document aims to address both of these concerns by defining almost all aspects of what an ebuild
repository looks like, and how an ebuild is allowed to behave. Thus, both Portage and other package
managers can change aspects of their behaviour not defined here without worry of incompatibilities
with any particular repository.

1.3 Conventions

Text in teletype is used for filenames or variable names. Italic text is used for terms with a partic-
ular technical meaning in places where there may otherwise be ambiguity.

The term package manager is used throughout this document in a broad sense. Although some
parts of this document are only relevant to fully featured package managers, many items are equally
applicable to tools or other applications that interact with ebuilds or ebuild repositories.

10

Chapter 2

EAPIs

2.1 Definition

An EAPI can be thought of as a ‘version’ of this specification to which a package conforms. An
EAPI value is a string as per section 3.1.7, and is part of an ebuild’s metadata.

If a package manager encounters a package version with an unrecognised EAPI, it must not attempt to
perform any operations upon it. It could, for example, ignore the package version entirely (although
this can lead to user confusion), or it could mark the package version as masked. A package manager
must not use any metadata generated from a package with an unrecognised EAPI.

The package manager must not attempt to perform any kind of comparison test other than equality
upon EAPIs.

EAPIs are also used for profile directories, as described in section 5.2.2.

2.2 Defined EAPIs

The following EAPIs are defined by this specification:

0 The ‘original’ base EAPI.

1 EAPI ‘1’ contains a number of extensions to EAPI ‘0’.

2 EAPI ‘2’ contains a number of extensions to EAPI ‘1’.

3 EAPI ‘3’ contains a number of extensions to EAPI ‘2’.

4 EAPI ‘4’ contains a number of extensions to EAPI ‘3’.

5 EAPI ‘5’ contains a number of extensions to EAPI ‘4’.

6 EAPI ‘6’ contains a number of extensions to EAPI ‘5’.

Except where explicitly noted, everything in this specification applies to all of the above EAPIs.1

2.3 Reserved EAPIs
• EAPIs whose value consists purely of an integer are reserved for future versions of this speci-

fication.
• EAPIs whose value starts with the string paludis- are reserved for experimental use by the

Paludis package manager.

1Another unofficial EAPI ‘kdebuild-1’ was a series of extensions to EAPI ‘1’ formerly used by the Gentoo KDE project.
Some of its features have been included in EAPI ‘2’ or later.

11

Chapter 3

Names and Versions

3.1 Restrictions upon Names

No name may be empty. Package managers must not impose fixed upper boundaries upon the length
of any name. A package manager should indicate or reject any name that is invalid according to these
rules.

3.1.1 Category Names

A category name may contain any of the characters [A-Za-z0-9+_.-]. It must not begin with a
hyphen, a dot or a plus sign.

Note: A hyphen is not required because of the virtual category. Usually, however, category
names will contain a hyphen.

3.1.2 Package Names

A package name may contain any of the characters [A-Za-z0-9+_-]. It must not begin with a
hyphen or a plus sign, and must not end in a hyphen followed by anything matching the version
syntax described in section 3.2.

Note: A package name does not include the category. The term qualified package name is used
where a category/package pair is meant.

3.1.3 Slot Names

A slot name may contain any of the characters [A-Za-z0-9+_.-]. It must not begin with a hyphen,
a dot or a plus sign.

3.1.4 USE Flag Names

A USE flag name may contain any of the characters [A-Za-z0-9+_@-]. It must begin with an
alphanumeric character. Underscores should be considered reserved for USE_EXPAND, as described
in section 11.1.1.

Note: The at-sign is required for LINGUAS.

12

CHAPTER 3. NAMES AND VERSIONS 13

3.1.5 Repository Names

A repository name may contain any of the characters [A-Za-z0-9_-]. It must not begin with a
hyphen. In addition, every repository name must also be a valid package name.

3.1.6 Keyword Names

A keyword name may contain any of the characters [A-Za-z0-9_-]. It must not begin with a hyphen.
In contexts where it makes sense to do so, a keyword name may be prefixed by a tilde or a hyphen.
In KEYWORDS, -* is also acceptable as a keyword.

3.1.7 EAPI Names

An EAPI name may contain any of the characters [A-Za-z0-9+_.-]. It must not begin with a
hyphen, a dot or a plus sign.

3.2 Version Specifications

The package manager must not impose fixed limits upon the number of version components. Package
managers should indicate or reject any version that is invalid according to these rules.

A version starts with the number part, which is in the form [0-9]+(\.[0-9]+)* (a positive integer,
followed by zero or more dot-prefixed positive integers).

This may optionally be followed by one of [a-z] (a lowercase letter).

This may be followed by zero or more of the suffixes _alpha, _beta, _pre, _rc or _p, which
themselves may be followed by an optional integer. Suffix and integer count as separate version
components.

This may optionally be followed by the suffix -r followed immediately by an integer (the “revision
number”). If this suffix is not present, it is assumed to be -r0.

3.3 Version Comparison

Version specifications are compared component by component, moving from left to right, as detailed
in Algorithm 3.1 and sub-algorithms. If a sub-algorithm returns a decision, then that is the result of
the whole comparison; if it terminates without returning a decision, the process continues from the
point from which it was invoked.

Algorithm 3.1 Version comparison top-level logic

1: let A and B be the versions to be compared
2: compare numeric components using Algorithm 3.2
3: compare letter components using Algorithm 3.4
4: compare suffixes using Algorithm 3.5
5: compare revision components using Algorithm 3.7
6: return A = B

3.4 Uniqueness of versions

No two packages in a given repository may have the same qualified package name and equal
versions. For example, a repository may not contain more than one of foo-bar/baz-1.0.2,
foo-bar/baz-1.0.2-r0 and foo-bar/baz-1.000.2.

CHAPTER 3. NAMES AND VERSIONS 14

Algorithm 3.2 Version comparison logic for numeric components

1: define the notations Ank and Bnk to mean the kth numeric component of A and B respectively,
using 0-based indexing

2: if An0 > Bn0 using integer comparison then
3: return A > B
4: else if An0 < Bn0 using integer comparison then
5: return A < B
6: end if
7: let Ann be the number of numeric components of A
8: let Bnn be the number of numeric components of B
9: for all i such that i≥ 1 and i < Ann and i < Bnn, in ascending order do

10: compare Ani and Bni using Algorithm 3.3
11: end for
12: if Ann > Bnn then
13: return A > B
14: else if Ann < Bnn then
15: return A < B
16: end if

Algorithm 3.3 Version comparison logic for each numeric component after the first

1: if either Ani or Bni has a leading 0 then
2: let An′i be Ani with any trailing 0s removed
3: let Bn′i be Bni with any trailing 0s removed
4: if An′i > Bn′i using ASCII stringwise comparison then
5: return A > B
6: else if An′i < Bn′i using ASCII stringwise comparison then
7: return A < B
8: end if
9: else

10: if Ani > Bni using integer comparison then
11: return A > B
12: else if Ani < Bni using integer comparison then
13: return A < B
14: end if
15: end if

Algorithm 3.4 Version comparison logic for letter components

1: let Al be the letter component of A if any, otherwise the empty string
2: let Bl be the letter component of B if any, otherwise the empty string
3: if Al > Bl using ASCII stringwise comparison then
4: return A > B
5: else if Al < Bl using ASCII stringwise comparison then
6: return A < B
7: end if

CHAPTER 3. NAMES AND VERSIONS 15

Algorithm 3.5 Version comparison logic for suffixes

1: define the notations Ask and Bsk to mean the kth suffix of A and B respectively, using 0-based
indexing

2: let Asn be the number of suffixes of A
3: let Bsn be the number of suffixes of B
4: for all i such that i≥ 0 and i < Asn and i < Bsn, in ascending order do
5: compare Asi and Bsi using Algorithm 3.6
6: end for
7: if Asn > Bsn then
8: if AsBsn is of type _p then
9: return A > B

10: else
11: return A < B
12: end if
13: else if Asn < Bsn then
14: if BsAsn is of type _p then
15: return A < B
16: else
17: return A > B
18: end if
19: end if

Algorithm 3.6 Version comparison logic for each suffix

1: if Asi and Bsi are of the same type (_alpha vs _beta etc) then
2: let As′i be the integer part of Asi if any, otherwise 0
3: let Bs′i be the integer part of Bsi if any, otherwise 0
4: if As′i > Bs′i, using integer comparison then
5: return A > B
6: else if As′i < Bs′i, using integer comparison then
7: return A < B
8: end if
9: else if the type of Asi is greater than the type of Bsi using the ordering _alpha < _beta <

_pre< _rc< _p then
10: return A > B
11: else
12: return A < B
13: end if

Algorithm 3.7 Version comparison logic for revision components

1: let Ar be the integer part of the revision component of A if any, otherwise 0
2: let Br be the integer part of the revision component of B if any, otherwise 0
3: if Ar > Br using integer comparison then
4: return A > B
5: else if Ar < Br using integer comparison then
6: return A < B
7: end if

Chapter 4

Tree Layout

This chapter defines the layout on-disk of an ebuild repository. In all cases below where a file or
directory is specified, a symlink to a file or directory is also valid. In this case, the package manager
must follow the operating system’s semantics for symbolic links and must not behave differently
from normal.

4.1 Top Level

An ebuild repository shall occupy one directory on disk, with the following subdirectories:

• One directory per category, whose name shall be the name of the category. The layout of these
directories shall be as described in section 4.2.

• A profiles directory, described in section 4.4.
• A licenses directory (optional), described in section 4.5.
• An eclass directory (optional), described in section 4.6.
• A metadata directory (optional), described in section 4.7.
• Other optional support files and directories (skeleton ebuilds or ChangeLogs, for example)

may exist but are not covered by this specification. The package manager must ignore any of
these files or directories that it does not recognise.

4.2 Category Directories

Each category provided by the repository (see also: the profiles/categories file, section 4.4)
shall be contained in one directory, whose name shall be that of the category. Each category directory
shall contain:

• A metadata.xml file, as described in appendix A. Optional.
• Zero or more package directories, one for each package in the category, as described in sec-

tion 4.3. The name of the package directory shall be the corresponding package name.

Category directories may contain additional files, whose purpose is not covered by this specification.
Additional directories that are not for a package may not be present, to avoid conflicts with package
name directories; an exception is made for filesystem components whose name starts with a dot,
which the package manager must ignore, and for any directory named CVS.

It is not required that a directory exists for each category provided by the repository. A category
directory that does not exist shall be considered equivalent to an empty category (and by extension,
a package manager may treat an empty category as a category that does not exist).

16

CHAPTER 4. TREE LAYOUT 17

4.3 Package Directories

A package directory contains the following:

• Zero or more ebuilds. These are as described in section 6 and others.
• A metadata.xml file, as described in appendix A. Optional only for legacy support.
• A ChangeLog, in a format determined by the provider of the repository. Optional.
• A Manifest file, whose format is described in [1].
• A files directory, containing any support files needed by the ebuilds. Optional.

Any ebuild in a package directory must be named name-ver.suffix, where:

• name is the (unqualified) package name.
• ver is the package’s version.
• suffix is ebuild.

Package managers must ignore any ebuild file that does not match these rules.

A package directory that contains no correctly named ebuilds shall be considered a package with no
versions. A package with no versions shall be considered equivalent to a package that does not exist
(and by extension, a package manager may treat a package that does not exist as a package with no
versions).

A package directory may contain other files or directories, whose purpose is not covered by this
specification.

4.4 The Profiles Directory

The profiles directory shall contain zero or more profile directories as described in section 5, as well
as the following files and directories. In any line-based file, lines beginning with a # character are
treated as comments, whilst blank lines are ignored. All contents of this directory, with the exception
of repo_name, are optional.

The profiles directory may contain an eapi file. This file, if it exists, must contain a single line with
the name of an EAPI. This specifies the EAPI to use when handling the profiles directory; a package
manager must not attempt to use any repository whose profiles directory requires an EAPI it does
not support. If no eapi file is present, EAPI 0 shall be used.

If the repository is not intended to be stand-alone, the contents of these files are to be taken from or
merged with the master repository as necessary.

Other files not described by this specification may exist, but may not be relied upon. The package
manager must ignore any files in this directory that it does not recognise.

arch.list Contains a list, one entry per line, of permissible values for the ARCH variable, and hence
permissible keywords for packages in this repository.

categories Contains a list, one entry per line, of categories provided by this repository.

eapi See above.

info_pkgs Contains a list, one entry per line, of qualified package names. Any package matching
one of these is to be listed when a package manager displays a ‘system information’ listing.

info_vars Contains a list, one entry per line, of profile, configuration, and environment variables
which are considered to be of interest. The value of each of these variables may be shown
when the package manager displays a ‘system information’ listing.

package.mask Contains a list, one entry per line, of package dependency specifications (using the
directory’s EAPI). Any package version matching one of these is considered to be masked,
and will not be installed regardless of profile unless it is unmasked by the user configuration.

profiles.desc Described below in section 4.4.1.

CHAPTER 4. TREE LAYOUT 18

repo_name Contains, on a single line, the name of this repository. The repository name must con-
form to section 3.1.5.

thirdpartymirrors Described below in section 4.4.2.

use.desc Contains descriptions of valid global USE flags for this repository. The format is described
in section 4.4.3.

use.local.desc Contains descriptions of valid local USE flags for this repository, along with the
packages to which they apply. The format is as described in section 4.4.3.

desc/ This directory contains files analogous to use.desc for the various USE_EXPAND variables.
Each file in it is named <varname>.desc, where <varname> is the variable name, in low-
ercase, whose possible values the file describes. The format of each file is as for use.desc,
described in section 4.4.3. The USE_EXPAND name is not included as a prefix here.

updates/ This directory is described in section 4.4.4.

4.4.1 The profiles.desc file

profiles.desc is a line-based file, with the standard commenting rules from section 4.4, containing
a list of profiles that are valid for use, along with their associated architecture and status. Each line
has the format:

<keyword> <profile path> <stability>

Where:

• <keyword> is the default keyword for the profile and the ARCH for which the profile is valid.
• <profile path> is the (relative) path from the profiles directory to the profile in question.
• <stability> indicates the stability of the profile. This may be useful for QA tools, which

may wish to display warnings with a reduced severity for some profiles. The values stable
and dev are widely used, but repositories may use other values.

Fields are whitespace-delimited.

4.4.2 The thirdpartymirrors file

thirdpartymirrors is another simple line-based file, describing the valid mirrors for use with
mirror:// URIs in this repository, and the associated download locations. The format of each line
is:

<mirror name> <mirror 1> <mirror 2> ... <mirror n>

Fields are whitespace-delimited. When parsing a URI of the form mirror://name/path/
filename, where the path/ part is optional, the thirdpartymirrors file is searched for a line
whose first field is name. Then the download URIs in the subsequent fields have path/filename
appended to them to generate the URIs from which a download is attempted.

Each mirror name may appear at most once in a file. Behaviour when a mirror name appears multiple
times is undefined. Behaviour when a mirror is defined in terms of another mirror is undefined. A
package manager may choose to fetch from all of or a subset of the listed mirrors, and may use an
order other than the one described.

The mirror with the name equal to the repository’s name (and if the repository has a master, the
master’s name) may be consulted for all downloads.

4.4.3 use.desc and related files

use.desc contains descriptions of every valid global USE flag for this repository. It is a line-based
file with the standard rules for comments and blank lines. The format of each line is:

CHAPTER 4. TREE LAYOUT 19

<flagname> - <description>

use.local.desc contains descriptions of every valid local USE flag—those that apply only to a
small number of packages, or that have different meanings for different packages. Its format is:

<category/package>:<flagname> - <description>

Flags must be listed once for each package to which they apply, or if a flag is listed in both use.desc
and use.local.desc, it must be listed once for each package for which its meaning differs from
that described in use.desc.

4.4.4 The updates directory

The updates directory is used to inform the package manager that a package has moved cate-
gories, names, or that a version has changed SLOT. It contains one file per quarter year, named
[1-4]Q-[YYYY] for the first to fourth quarter of a given year, for example 1Q-2004 or 3Q-2006.
The format of each file is again line-based, with each line having one of the following formats:

move <qpn1> <qpn2>
slotmove <spec> <slot1> <slot2>

The first form, where qpn1 and qpn2 are qualified package names, instructs the package manager
that the package qpn1 has changed name, category, or both, and is now called qpn2.

The second form instructs the package manager that any currently installed package version matching
package dependency specification spec whose SLOT is set to slot1 should have it updated to slot2.

Any name that has appeared as the origin of a move must not be reused in the future. Any slot that
has appeared as the origin of a slot move may not be used by packages matching the spec of that slot
move in the future.

4.5 The Licenses Directory

The licenses directory shall contain copies of the licenses used by packages in the repository. Each
file will be named according to the name used in the LICENSE variable as described in section 7.3,
and will contain the complete text of the license in human-readable form. Plain text format is strongly
preferred but not required.

4.6 The Eclass Directory

The eclass directory shall contain copies of the eclasses provided by this repository. The format of
these files is described in section 10. It may also contain, in their own directory, support files needed
by these eclasses.

4.7 The Metadata Directory

The metadata directory contains various repository-level metadata that is not contained in
profiles/. All contents are optional. In this standard only the cache subdirectory is described;
other contents are optional but may include security advisories, DTD files for the various XML files
used in the repository, and repository timestamps.

4.7.1 The metadata cache

The metadata/cache directory may contain a cached form of all important ebuild metadata vari-
ables. The contents of this directory are described in section 13.

Chapter 5

Profiles

5.1 General principles

Generally, a profile defines information specific to a certain ‘type’ of system—it lies somewhere
between repository-level defaults and user configuration in that the information it contains is not
necessarily applicable to all machines, but is sufficiently general that it should not be left to the user
to configure it. Some parts of the profile can be overridden by user configuration, some only by
another profile.

The format of a profile is relatively simple. Each profile is a directory containing any number of the
files described in this chapter, and possibly inheriting another profile. The files themselves follow a
few basic conventions as regards inheritance and format; these are described in the next section. It
may also contain any number of subdirectories containing other profiles.

5.2 Files that make up a profile

5.2.1 The parent file

A profile may contain a parent file. Each line must contain a relative path to another profile which
will be considered as one of this profile’s parents. Any settings from the parent are inherited by this
profile, and can be overridden by it. Precise rules for how settings are combined with the parent
profile vary between files, and are described below. Parents are handled depth first, left to right, with
duplicate parent paths being sourced for every time they are encountered.

It is illegal for a profile’s parent tree to contain cycles. Package manager behaviour upon encounter-
ing a cycle is undefined.

This file must not contain comments, blank lines or make use of line continuations.

5.2.2 The eapi file

A profile directory may contain an eapi file. This file, if it exists, must contain a single line with
the name of an EAPI. This specifies the EAPI to use when handling the directory in question; a
package manager must not attempt to use any profile using a directory which requires an EAPI it
does not support. If no eapi file is present, EAPI 0 shall be used. The EAPI is neither inherited via
the parent file nor in subdirectories.

20

CHAPTER 5. PROFILES 21

5.2.3 deprecated

If a profile contains a file named deprecated, it is treated as such. The first line of this file should
contain the path from the profiles directory of the repository to a valid profile that is the recom-
mended upgrade path from this profile. The remainder of the file can contain any text, which may
be displayed to users using this profile by the package manager. This file is not inherited—profiles
which inherit from a deprecated profile are not deprecated.

This file must not contain comments or make use of line continuations.

5.2.4 make.defaults

make.defaults is used to define defaults for various environment and configuration variables. This
file is unusual in that it is not combined at a file level with the parent—instead, each variable is
combined or overridden individually as described in section 5.3.

The file itself is a line-based key-value format. Each line contains a single VAR="value" entry,
where the value must be double quoted. A variable name must start with one of a-zA-Z and may
contain a-zA-Z0-9_ only. Additional syntax, which is a small subset of bash syntax, is allowed as
follows:

• Variables to the right of the equals sign in the form ${foo} or $foo are recognised and ex-
panded from variables previously set in this or earlier make.defaults files.

• One logical line may be continued over multiple physical lines by escaping the newline with
a backslash. A quoted string may be continued over multiple physical lines by either a simple
newline or a backslash-escaped newline.

• Backslashes, except for line continuations, are not allowed.

5.2.5 Simple line-based files

These files are a simple one-item-per-line list, which is inherited in the following manner: the parent
profile’s list is taken, and the current profile’s list appended. If any line begins with a hyphen, then
any lines previous to it whose contents are equal to the remainder of that line are removed from the
list. Once again, blank lines and those beginning with a # are discarded.

5.2.6 packages

The packages file is used to define the ‘system set’ for this profile. After the above rules for in-
heritance and comments are applied, its lines must take one of two forms: a package dependency
specification prefixed by * denotes that it forms part of the system set. A package dependency spec-
ification on its own may also appear for legacy reasons, but should be ignored when calculating the
system set.

5.2.7 packages.build

The packages.build file is used by Gentoo’s Catalyst tool to generate stage1 tarballs, and has no
relevance to the operation of a package manager. It is thus outside the scope of this document, but is
mentioned here for completeness.

5.2.8 package.mask

package.mask is used to prevent packages from being installed on a given profile. Each line con-
tains one package dependency specification; anything matching this specification will not be installed
unless unmasked by the user’s configuration.

CHAPTER 5. PROFILES 22

Table 5.1: Profile directory support for masking/forcing use flags in stable versions only

EAPI Supports masking/forcing use flags in stable versions?

0, 1, 2, 3, 4 No
5, 6 Yes

Note that the -spec syntax can be used to remove a mask in a parent profile, but not necessarily a
global mask (from profiles/package.mask, section 4.4).

Note: Portage currently treats profiles/package.mask as being on the leftmost branch of the
inherit tree when it comes to -lines. This behaviour may not be relied upon.

5.2.9 package.provided

package.provided is used to tell the package manager that a certain package version should be
considered to be provided by the system regardless of whether it is actually installed. Because it has
severe adverse effects on USE-based and slot-based dependencies, its use is strongly deprecated and
package manager support must be regarded as purely optional.

5.2.10 package.use

The package.use file may be used by the package manager to override the default USE flags spec-
ified by make.defaults on a per package basis. The format is to have a package dependency spec-
ification, and then a space delimited list of USE flags to enable. A USE flag in the form of -flag
indicates that the package should have the USE flag disabled. The package dependency specification
is limited to the forms defined by the directory’s EAPI.

5.2.11 USE masking and forcing

This section covers the eight files use.mask, use.force, use.stable.mask, use.stable.force,
package.use.mask, package.use.force, package.use.stable.mask, and package.use.
stable.force. They are described together because they interact in a non-trivial manner.

Simply speaking, use.mask and use.force are used to say that a given USE flag must
never or always, respectively, be enabled when using this profile. package.use.mask and
package.use.force do the same thing on a per-package, or per-version, basis.

STABLEMASKIn profile directories with an EAPI supporting stable masking, as listed in table 5.1, the same is true
for use.stable.mask, use.stable.force, package.use.stable.mask and package.use.
stable.force. These files, however, only act on packages that are merged due to a stable key-
word in the sense of subsection 7.3.2. Thus, these files can be used to restrict the feature set deemed
stable in a package.

The precise manner in which the eight files interact is less simple, and is best described in terms
of the algorithm used to determine whether a flag is masked for a given package version. This is
described in Algorithm 5.1.

Stable restrictions (“stable keyword in use” in Algorithm 5.1) are applied exactly if replacing in
KEYWORDS all stable keywords by the corresponding tilde prefixed keywords (see subsection 7.3.2)
would result in the package installation being prevented due to the KEYWORDS setting.

The logic for use.force, use.stable.force, package.use.force, and package.use.
stable.force is identical. If a flag is both masked and forced, the mask is considered to take
precedence.

USE_EXPAND values may be forced or masked by using expand_name_value.

CHAPTER 5. PROFILES 23

Algorithm 5.1 USE masking logic

1: let masked = false
2: for each profile in the inheritance tree, depth first do
3: if use.mask contains flag then
4: let masked = true
5: else if use.mask contains -flag then
6: let masked = false
7: end if
8: if stable keyword in use then
9: if use.stable.mask contains flag then

10: let masked = true
11: else if use.stable.mask contains -flag then
12: let masked = false
13: end if
14: end if
15: for each line in package.use.mask, in order, for which the spec matches package do
16: if line contains flag then
17: let masked = true
18: else if line contains -flag then
19: let masked = false
20: end if
21: end for
22: if stable keyword in use then
23: for each line in package.use.stable.mask, in order, for which the spec matches package do
24: if line contains flag then
25: let masked = true
26: else if line contains -flag then
27: let masked = false
28: end if
29: end for
30: end if
31: end for

CHAPTER 5. PROFILES 24

Table 5.2: Profile-defined IUSE injection for EAPIs

EAPI Supports profile-defined IUSE injection?

0, 1, 2, 3, 4 No
5, 6 Yes

A package manager may treat ARCH values that are not the current architecture as being masked.

5.3 Profile variables

This section documents variables that have special meaning, or special behaviour, when defined in a
profile’s make.defaults file.

5.3.1 Incremental Variables

Incremental variables must stack between parent and child profiles in the following manner: Begin-
ning with the highest parent profile, tokenise the variable’s value based on whitespace and concate-
nate the lists. Then, for any token T beginning with a hyphen, remove it and any previous tokens
whose value is equal to T with the hyphen removed, or, if T is equal to -*, remove all previous
values. Note that because of this treatment, the order of tokens in the final result is arbitrary, not nec-
essarily related to the order of tokens in any given profile. The following variables must be treated in
this fashion:

• USE
• USE_EXPAND
• USE_EXPAND_HIDDEN
• CONFIG_PROTECT
• CONFIG_PROTECT_MASK

If the package manager supports any EAPI listed in table 5.2 as using profile-defined IUSE injection,
the following variables must also be treated incrementally; otherwise, the following variables may or
may not be treated incrementally:

• IUSE_IMPLICIT
• USE_EXPAND_IMPLICIT
• USE_EXPAND_UNPREFIXED

Other variables, except where they affect only package-manager-specific functionality (such as
Portage’s FEATURES variable), must not be treated incrementally—later definitions shall completely
override those in parent profiles.

5.3.2 Specific variables and their meanings

The following variables have specific meanings when set in profiles.

ARCH The system’s architecture. Must be a value listed in profiles/arch.list; see section 4.4
for more information. Must be equal to the primary KEYWORD for this profile.

CONFIG_PROTECT, CONFIG_PROTECT_MASK Contain whitespace-delimited lists used to
control the configuration file protection. Described more fully in chapter 12.3.3.

USE Defines the list of default USE flags for this profile. Flags may be added or removed by the
user’s configuration. USE_EXPAND values must not be specified in this way.

USE_EXPAND Defines a list of variables which are to be treated incrementally and whose contents
are to be expanded into the USE variable as passed to ebuilds. See section 11.1.1 for details.

CHAPTER 5. PROFILES 25

USE_EXPAND_UNPREFIXED Similar to USE_EXPAND, but no prefix is used. If the repository
contains any package using an EAPI supporting profile-defined IUSE injection (see table 5.2),
this list must contain at least ARCH. See section 11.1.1 for details.

USE_EXPAND_HIDDEN Contains a (possibly empty) subset of names from USE_EXPAND and
USE_EXPAND_UNPREFIXED. The package manager may use this set as a hint to avoid display-
ing uninteresting or unhelpful information to an end user.

USE_EXPAND_IMPLICIT, IUSE_IMPLICIT Used to inject implicit values into IUSE. See sec-
tion 11.1.1 for details.

In addition, for EAPIs listed in table 5.2 as supporting profile defined IUSE injection, the variables
named in USE_EXPAND and USE_EXPAND_UNPREFIXED have special handling as described in sec-
tion 11.1.1.

Any other variables set in make.defaults must be passed on into the ebuild environment as-is, and
are not required to be interpreted by the package manager.

Chapter 6

Ebuild File Format

BASH-VERSIONThe ebuild file format is in its basic form a subset of the format of a bash script. The interpreter is
assumed to be GNU bash, version as listed in table 6.1, or any later version. If possible, the package
manager should set the shell’s compatibility level to the exact version specified. It must ensure
that any such compatibility settings (e.g. the BASH_COMPAT variable) are not exported to external
programs.

The file encoding must be UTF-8 with Unix-style newlines. When sourced, the ebuild must define
certain variables and functions (see sections 7 and 9 for specific information), and must not call any
external programs, write anything to standard output or standard error, or modify the state of the
system in any way.

Table 6.1: Bash version

EAPI Bash version

0, 1, 2, 3, 4, 5 3.2
6 4.2

26

Chapter 7

Ebuild-defined Variables

Note: This section describes variables that may or must be defined by ebuilds. For variables that
are passed from the package manager to the ebuild, see section 11.1.

If any of these variables are set to invalid values, or if any of the mandatory variables are undefined,
the package manager’s behaviour is undefined; ideally, an error in one ebuild should not prevent
operations upon other ebuilds or packages.

7.1 Metadata invariance

All ebuild-defined variables discussed in this chapter must be defined independently of any system,
profile or tree dependent data, and must not vary depending upon the ebuild phase. In particular,
ebuild metadata can and will be generated on a different system from that upon which the ebuild will
be used, and the ebuild must generate identical metadata every time it is used.

Globally defined ebuild variables without a special meaning must similarly not rely upon variable
data.

7.2 Mandatory Ebuild-defined Variables

All ebuilds must define at least the following variables:

DESCRIPTION A short human-readable description of the package’s purpose. May be defined by
an eclass. Must not be empty.

SLOT The package’s slot. Must be a valid slot name, as per section 3.1.3. May be defined by an
eclass. Must not be empty.

In EAPIs shown in table 8.4 as supporting sub-slots, the SLOT variable may contain an optional
sub-slot part that follows the regular slot and is delimited by a / character. The sub-slot must
be a valid slot name, as per section 3.1.3. The sub-slot is used to represent cases in which
an upgrade to a new version of a package with a different sub-slot may require dependent
packages to be rebuilt. When the sub-slot part is omitted from the SLOT definition, the package
is considered to have an implicit sub-slot which is equal to the regular slot.

7.3 Optional Ebuild-defined Variables

Ebuilds may define any of the following variables:

EAPI The EAPI. See below.

27

CHAPTER 7. EBUILD-DEFINED VARIABLES 28

Table 7.1: EAPIs supporting IUSE defaults

EAPI Supports IUSE defaults?

0 No
1, 2, 3, 4, 5, 6 Yes

Table 7.2: EAPIs supporting various ebuild-defined variables

EAPI Supports PROPERTIES? Supports REQUIRED_USE?

0, 1, 2, 3 Optionally No
4, 5, 6 Yes Yes

HOMEPAGE The URI or URIs for a package’s homepage, including protocols. See section 8 for
full syntax.

SRC_URI A list of source URIs for the package. Valid protocols are http://, https://, ftp://
and mirror:// (see section 4.4.2 for mirror behaviour). Fetch restricted packages may in-
clude URL parts consisting of just a filename. See section 8 for full syntax.

LICENSE The package’s license. Each text token must correspond to a tree “licenses/” entry (see
section 4.5). See section 8 for full syntax.

KEYWORDS A whitespace separated list of keywords for the ebuild. Each token must be a valid
keyword name, as per section 3.1.6. See section 7.3.2 for full syntax.

IUSE The USE flags used by the ebuild. Any eclass that works with USE flags must also set IUSE,
listing only the variables used by that eclass. The package manager is responsible for merging
these values. See section 11.1.1 for discussion on which values must be listed this variable.

IUSE-DEFAULTSIn EAPIs shown in table 7.1 as supporting IUSE defaults, any use flag name in IUSE may be
prefixed by at most one of a plus or a minus sign. If such a prefix is present, the package man-
ager may use it as a suggestion as to the default value of the use flag if no other configuration
overrides it.

REQUIRED_USE REQUIRED-USEZero or more assertions that must be met by the configuration of USE flags to be
valid for this ebuild. See section 8.2.7 for description and section 8 for full syntax. Only in
EAPIs listed in table 7.2 as supporting REQUIRED_USE.

PROPERTIES PROPERTIESZero or more properties for this package. See section 8.2.9 for value meanings and
section 8 for full syntax. For EAPIs listed in table 7.2 as having optional support, ebuilds must
not rely upon the package manager recognising or understanding this variable in any way.

RESTRICT Zero or more behaviour restrictions for this package. See section 8.2.8 for value mean-
ings and section 8 for full syntax.

DEPEND See section 8.

RDEPEND See section 8. For some EAPIs, RDEPEND has special behaviour for its value if unset
and when used with an eclass. See section 7.3.3 for details.

PDEPEND See section 8.

7.3.1 EAPI

An empty or unset EAPI value is equivalent to 0. Ebuilds must not assume that they will get a
particular one of these two values if they are expecting one of these two values.

The package manager must either pre-set the EAPI variable to 0 or ensure that it is unset before
sourcing the ebuild for metadata generation. When using the ebuild for other purposes, the package
manager must either pre-set EAPI to the value specified by the ebuild’s metadata or ensure that it is
unset.

CHAPTER 7. EBUILD-DEFINED VARIABLES 29

Table 7.3: EAPIs with RDEPEND=DEPEND Default

EAPI RDEPEND=DEPEND?

0, 1, 2, 3 Yes
4, 5, 6 No

If any of these variables are set to invalid values, the package manager’s behaviour is undefined;
ideally, an error in one ebuild should not prevent operations upon other ebuilds or packages.

If the EAPI is to be specified in an ebuild, the EAPI variable must be assigned to precisely once.
The assignment must not be preceded by any lines other than blank lines or those that start with
optional whitespace (spaces or tabs) followed by a # character, and the line containing the assignment
statement must match the following regular expression:

^[\t]*EAPI=([’"]?)([A-Za-z0-9+_.-]*)\1[\t]*([\t]#.*)?$

The package manager must determine the EAPI of an ebuild by parsing its first non-blank and non-
comment line, using the above regular expression. If it matches, the EAPI is the substring matched
by the capturing parentheses (0 if empty), otherwise it is 0. For a recognised EAPI, the package
manager must make sure that the EAPI value obtained by sourcing the ebuild with bash is identical
to the EAPI obtained by parsing. The ebuild must be treated as invalid if these values are different.

7.3.2 Keywords

Keywords are used to indicate levels of stability of a package on a respective architecture arch. The
following conventions are used:

• arch: Both the package version and the ebuild are widely tested, known to work and not have
any serious issues on the indicated platform. This is referred to as a stable keyword.

• ~arch: The package version and the ebuild are believed to work and do not have any known
serious bugs, but more testing is required before the package version is considered suitable for
obtaining a stable keyword. This is referred to as an unstable keyword or a testing keyword.

• No keyword: It is not known whether the package will work, or insufficient testing has oc-
curred.

• -arch: The package version will not work on the architecture.

The -* keyword is used to indicate package versions which are not worth trying to test on unlisted
architectures.

An empty KEYWORDS variable indicates uncertain functionality on any architecture.

7.3.3 RDEPEND value

RDEPEND-DEPENDIn EAPIs listed in table 7.3 as having RDEPEND=DEPEND, if RDEPEND is unset (but not if it is set to
an empty string) in an ebuild, when generating metadata the package manager must treat its value as
being equal to the value of DEPEND.

When dealing with eclasses, only values set in the ebuild itself are considered for this behaviour; any
DEPEND or RDEPEND set in an eclass does not change the implicit RDEPEND=DEPEND for the ebuild
portion, and any DEPEND value set in an eclass does not get treated as being part of RDEPEND.

7.4 Magic Ebuild-defined Variables

The following variables must be defined by inherit (see section 10.1), and may be considered to
be part of the ebuild’s metadata:

CHAPTER 7. EBUILD-DEFINED VARIABLES 30

Table 7.4: EAPIs supporting DEFINED_PHASES

EAPI Supports DEFINED_PHASES?

0, 1, 2, 3 Optionally
4, 5, 6 Yes

ECLASS The current eclass, or unset if there is no current eclass. This is handled magically by
inherit and must not be modified manually.

INHERITED List of inherited eclass names. Again, this is handled magically by inherit.

Note: Thus, by extension of section 7.1, inherit may not be used conditionally, except upon
constant conditions.

The following are special variables defined by the package manager for internal use and may or may
not be exported to the ebuild environment:

DEFINED_PHASES DEFINED-PHASESA space separated arbitrarily ordered list of phase names (e. g. configure
setup unpack) whose phase functions are defined by the ebuild or an eclass inherited by the
ebuild. If no phase functions are defined, a single hyphen is used instead of an empty string.
For EAPIs listed in table 7.4 as having optional DEFINED_PHASES support, package managers
may not rely upon the metadata cache having this variable defined, and must treat an empty
string as “this information is not available”.

Note: Thus, by extension of section 7.1, phase functions must not be defined based upon any
variant condition.

Chapter 8

Dependencies

8.1 Dependency Classes

There are three classes of dependencies supported by ebuilds:

• Build dependencies (DEPEND). These must be installed and usable before any of the ebuild
src_* phase functions is executed. These may not be installed at all if a binary package is
being merged.

• Runtime dependencies (RDEPEND). These must be installed and usable before the results of an
ebuild merging are treated as usable.

• Post dependencies (PDEPEND). These must be installed at some point before the package man-
ager finishes the batch of installs.

Table 8.1 lists dependencies which must be satisfied before a particular phase function is executed.

In addition, SRC_URI, HOMEPAGE, RESTRICT, PROPERTIES, LICENSE and REQUIRED_USE use
dependency-style specifications to specify their values.

8.2 Dependency Specification Format

The following elements are recognised in at least one class of specification. All elements must be
surrounded on both sides by whitespace, except at the start and end of the string.

• A package dependency specification. Permitted in DEPEND, RDEPEND, PDEPEND.
• A URI, in the form proto://host/path. Permitted in SRC_URI and HOMEPAGE. In EAPIs

listed in table 8.2 as supporting SRC_URI arrows, may optionally be followed by whitespace,
then ->, then whitespace, then a simple filename when in SRC_URI. For SRC_URI behaviour,
see section 8.2.10.

• A flat filename. Permitted in SRC_URI.
• A license name (e. g. GPL-2). Permitted in LICENSE.
• A use flag name, optionally preceded by an exclamation mark. Permitted in REQUIRED_USE.
• A simple string. Permitted in RESTRICT and PROPERTIES.
• An all-of group, which consists of an open parenthesis, followed by whitespace, followed by

zero or more of (a dependency item of any kind followed by whitespace), followed by a close
parenthesis. More formally: all-of ::= ’(’ whitespace (item whitespace)* ’)’.
Permitted in all specification style variables.

• An any-of group, which consists of the string ||, followed by whitespace, followed by an open
parenthesis, followed by whitespace, followed by zero or more of (a dependency item of any
kind followed by whitespace), followed by a close parenthesis. More formally: any-of ::=
’||’ whitespace ’(’ whitespace (item whitespace)* ’)’. Permitted in DEPEND,
RDEPEND, PDEPEND, LICENSE, REQUIRED_USE.

31

CHAPTER 8. DEPENDENCIES 32

Table 8.1: Dependency classes required to be satisfied for a particular phase function

Phase function Satisfied dependency classes

pkg_pretend,
pkg_setup,
pkg_info,
pkg_nofetch

None (ebuilds can rely only on the packages in the system set)

src_unpack,
src_prepare,
src_configure,
src_compile,
src_test,
src_install

DEPEND

pkg_preinst,
pkg_postinst,
pkg_prerm,
pkg_postrm

RDEPEND (unless the particular dependency results in a circular
dependency, in which case it may be installed later)

pkg_config RDEPEND, PDEPEND

Table 8.2: EAPIs supporting SRC_URI arrows

EAPI Supports SRC_URI arrows?

0, 1 No
2, 3, 4, 5, 6 Yes

• An exactly-one-of group, which consists of the string ^^, followed by whitespace, followed
by an open parenthesis, followed by whitespace, followed by zero or more of (a dependency
item of any kind followed by whitespace), followed by a close parenthesis. More formally:
exactly-one-of ::= ’^^’ whitespace ’(’ whitespace (item whitespace)* ’)’.
Permitted in REQUIRED_USE.

• AT-MOST-ONE-OFAn at-most-one-of group, which consists of the string ??, followed by whitespace, followed
by an open parenthesis, followed by whitespace, followed by zero or more of (a dependency
item of any kind followed by whitespace), followed by a close parenthesis. More formally:
at-most-one-of ::= ’??’ whitespace ’(’ whitespace (item whitespace)* ’)’.
Permitted in REQUIRED_USE in EAPIs listed in table 8.3 as supporting REQUIRED_USE ??
groups.

• A use-conditional group, which consists of an optional exclamation mark, followed by a use
flag name, followed by a question mark, followed by whitespace, followed by an open paren-
thesis, followed by whitespace, followed by zero or more of (a dependency item of any kind
followed by whitespace), followed by a close parenthesis. More formally: use-conditional
::= ’!’? flag-name ’?’ whitespace ’(’ whitespace (item whitespace)* ’)’.
Permitted in all specification style variables.

In particular, note that whitespace is not optional.

8.2.1 All-of Dependency Specifications

In an all-of group, all of the child elements must be matched.

Table 8.3: EAPIs supporting REQUIRED_USE ?? groups

EAPI Supports REQUIRED_USE ?? groups?

0, 1, 2, 3, 4 No
5, 6 Yes

CHAPTER 8. DEPENDENCIES 33

8.2.2 Use-conditional Dependency Specifications

In a use-conditional group, if the associated use flag is enabled (or disabled if it has an exclamation
mark prefix), all of the child elements must be matched.

It is an error for a flag to be used if it is not included in IUSE_EFFECTIVE as described in sec-
tion 11.1.1.

8.2.3 Any-of Dependency Specifications

Any use-conditional group that is an immediate child of an any-of group, if not enabled (disabled
for an exclamation mark prefixed use flag name), is not considered a member of the any-of group for
match purposes.

In an any-of group, at least one immediate child element must be matched. A blocker is considered
to be matched if its associated package dependency specification is not matched.

An empty any-of group counts as being matched.

8.2.4 Exactly-one-of Dependency Specifications

Any use-conditional group that is an immediate child of an exactly-one-of group, if not enabled
(disabled for an exclamation mark prefixed use flag name), is not considered a member of the exactly-
one-of group for match purposes.

In an exactly-one-of group, exactly one immediate child element must be matched.

An empty exactly-one-of group counts as being matched.

8.2.5 At-most-one-of Dependency Specifications

Any use-conditional group that is an immediate child of an at-most-one-of group, if not enabled
(disabled for an exclamation mark prefixed use flag name), is not considered a member of the at-
most-one-of group for match purposes.

In an at-most-one-of group, at most one immediate child element must be matched.

An empty at-most-one-of group counts as being matched.

8.2.6 Package Dependency Specifications

A package dependency can be in one of the following base formats. A package manager must warn
or error on non-compliant input.

• A simple category/package name.
• An operator, as described in section 8.2.6.1, followed immediately by category/package,

followed by a hyphen, followed by a version specification.

In EAPIs shown in table 8.4 as supporting SLOT dependencies, either of the above formats may
additionally be suffixed by a :slot restriction, as described in section 8.2.6.3. A package manager
must warn or error if slot dependencies are used with an EAPI not supporting SLOT dependencies.

USE-DEPSIn EAPIs shown in table 8.5 as supporting 2-style or 4-style USE dependencies, a specification may
additionally be suffixed by at most one 2-style or 4-style [use] restriction, as described in sec-
tion 8.2.6.4. A package manager must warn or error if this feature is used with an EAPI not support-
ing use dependencies.

Note: Order is important. The slot restriction must come before use dependencies.

CHAPTER 8. DEPENDENCIES 34

Table 8.4: Support for SLOT dependencies and sub-slots in EAPIs

EAPI Supports SLOT dependencies? Supports sub-slots?

0 No No
1, 2, 3, 4 Named only No
5, 6 Named and operator Yes

Table 8.5: EAPIs supporting USE dependencies

EAPI Supports USE dependencies?

0, 1 No
2, 3 2-style
4, 5, 6 4-style

8.2.6.1 Operators

The following operators are available:

< Strictly less than the specified version.

<= Less than or equal to the specified version.

= Exactly equal to the specified version. Special exception: if the version specified has an asterisk
immediately following it, then only the given number of version components is used for com-
parison, i. e. the asterisk acts as a wildcard for any further components. When an asterisk is
used, the specification must remain valid if the asterisk were removed. (An asterisk used with
any other operator is illegal.)

~ Equal to the specified version when revision parts are ignored.

>= Greater than or equal to the specified version.

> Strictly greater than the specified version.

8.2.6.2 Block Operator

If the specification is prefixed with one or two exclamation marks, the named dependency is a block
rather than a requirement—that is to say, the specified package must not be installed, with the fol-
lowing exceptions:

• Blocks on a package provided exclusively by the ebuild do not count.
• Weak blocks on the package version of the ebuild itself do not count.

BANG-STRENGTHThere are two strengths of block: weak and strong. A weak block may be ignored by the package
manager, so long as any blocked package will be uninstalled later on. A strong block must not be
ignored. The mapping from one or two exclamation marks to strength is described in table 8.6.

8.2.6.3 Slot Dependencies

SLOT-DEPSA named slot dependency consists of a colon followed by a slot name. A specification with a named
slot dependency matches only if the slot of the matched package is equal to the slot specified. If

Table 8.6: Exclamation mark strengths for EAPIs

EAPI ! !!

0, 1 Unspecified Forbidden
2, 3, 4, 5, 6 Weak Strong

CHAPTER 8. DEPENDENCIES 35

the slot of the package to match cannot be determined (e. g. because it is not a supported EAPI), the
match is treated as unsuccessful.

SUB-SLOTIn EAPIs shown in table 8.4 as supporting sub-slots, a slot dependency may contain an optional
sub-slot part that follows the regular slot and is delimited by a / character.

SLOT-OPERATOR-DEPSAn operator slot dependency consists of a colon followed by one of the following operators:

* Indicates that any slot value is acceptable. In addition, for runtime dependencies, indicates that
the package will not break if the matched package is uninstalled and replaced by a different
matching package in a different slot.

= Indicates that any slot value is acceptable. In addition, for runtime dependencies, indicates that
the package will break unless a matching package with slot and sub-slot equal to the slot and
sub-slot of the best installed version at the time the package was installed is available.

slot= Indicates that only a specific slot value is acceptable, and otherwise behaves identically to the
plain equals slot operator.

To implement the equals slot operator, the package manager will need to store the slot/sub-slot pair
of the best installed version of the matching package. This syntax is only for package manager use
and must not be used by ebuilds. The package manager may do this by inserting the appropriate
slot/sub-slot pair between the colon and equals sign when saving the package’s dependencies. The
sub-slot part must not be omitted here (when the SLOT variable omits the sub-slot part, the package
is considered to have an implicit sub-slot which is equal to the regular slot).

8.2.6.4 2-Style and 4-Style Use Dependencies

A 2-style or 4-style use dependency consists of one of the following:

[opt] The flag must be enabled.

[opt=] The flag must be enabled if the flag is enabled for the package with the dependency, or
disabled otherwise.

[!opt=] The flag must be disabled if the flag is enabled for the package with the dependency, or
enabled otherwise.

[opt?] The flag must be enabled if the flag is enabled for the package with the dependency.

[!opt?] The flag must be disabled if the use flag is disabled for the package with the dependency.

[-opt] The flag must be disabled.

Multiple requirements may be combined using commas, e. g. [first,-second,third?].

When multiple requirements are specified, all must match for a successful match.

USE-DEP-DEFAULTSIn a 4-style use dependency, the flag name may immediately be followed by a default specified by
either (+) or (-). The former indicates that, when applying the use dependency to a package that
does not have the flag in question in IUSE_REFERENCEABLE, the package manager shall behave as if
the flag were present and enabled; the latter, present and disabled.

Unless a 4-style default is specified, it is an error for a use dependency to be applied to an ebuild
which does not have the flag in question in IUSE_REFERENCEABLE.

Note: By extension of the above, a default that could reference an ebuild using an EAPI not sup-
porting profile IUSE injections cannot rely upon any particular behaviour for flags that would not
have to be part of IUSE.

It is an error for an ebuild to use a conditional use dependency when that ebuild does not have the
flag in IUSE_EFFECTIVE.

CHAPTER 8. DEPENDENCIES 36

8.2.7 Use State Constraints

REQUIRED_USE contains a list of assertions that must be met by the configuration of USE flags to be
valid for this ebuild. In order to be matched, a USE flag in a terminal element must be enabled (or
disabled if it has an exclamation mark prefix).

If the package manager encounters a package version where REQUIRED_USE assertions are not met,
it must treat this package version as if it was masked. No phase functions must be called.

It is an error for a flag to be used if it is not included in IUSE_EFFECTIVE.

8.2.8 Restrict

The following tokens are permitted inside RESTRICT:

mirror The package’s SRC_URI entries may not be mirrored, and mirrors should not be checked
when fetching.

fetch The package’s SRC_URI entries may not be downloaded automatically. If entries are not avail-
able, pkg_nofetch is called. Implies mirror.

strip No stripping of debug symbols from files to be installed may be performed.

userpriv The package manager may not drop root privileges when building the package.

test The src_test phase must not be run.

Package managers may recognise other tokens, but ebuilds may not rely upon them being supported.

8.2.9 Properties

The following tokens are permitted inside PROPERTIES:

interactive The package may require interaction with the user via the tty.

Ebuilds may not rely upon any token being supported.

8.2.10 SRC_URI

All filename components that are enabled (i. e. not inside a use-conditional block that is not matched)
in SRC_URI must be available in the DISTDIR directory. In addition, these components are used to
make the A and AA variables.

If a component contains a full URI with protocol, that download location must be used. Package
managers may also consult mirrors for their files.

The special mirror:// protocol must be supported. See section 4.4.2 for mirror details.

If a simple filename rather than a full URI is provided, the package manager can only use mirrors to
download the file.

The RESTRICT metadata key can be used to impose additional restrictions upon downloading—see
section 8.2.8 for details.

SRC-URI-ARROWSIn EAPIs supporting arrows, if an arrow is used, the filename used when saving to DISTDIR shall
instead be the name on the right of the arrow. When consulting mirrors (except for those explicitly
listed on the left of the arrow, if mirror:// is used), the filename to the right of the arrow shall be
requested instead of the filename in the URI.

Chapter 9

Ebuild-defined Functions

9.1 List of Functions

The following is a list of functions that an ebuild, or eclass, may define, and which will be called
by the package manager as part of the build and/or install process. In all cases the package manager
must provide a default implementation of these functions; unless otherwise stated this must be a no-
op. Most functions must assume only that they have write access to the package’s working directory
(the WORKDIR environment variable; see section 11.1), and the temporary directory T; exceptions are
noted below. All functions may assume that they have read access to all system libraries, binaries
and configuration files that are accessible to normal users.

The environment for functions run outside of the build sequence (that is, pkg_config, pkg_info,
pkg_prerm and pkg_postrm) must be the environment used for the build of the package, not the
current configuration.

Ebuilds must not call nor assume the existence of any phase functions.

9.1.1 Initial Working Directories

Some functions may assume that their initial working directory is set to a particular location; these
are noted below. If no initial working directory is mandated, it may be set to anything and the
ebuild must not rely upon a particular location for it. The ebuild may assume that the initial working
directory for any phase is a trusted location that may only be written to by a privileged user and
group.

S-WORKDIR-FALLBACKSome functions are described as having an initial working directory of S with an error or fallback to
WORKDIR. For EAPIs listed in table 9.1 as having the fallback, this means that if S is not a directory
before the start of the phase function, the initial working directory shall be WORKDIR instead. For
EAPIs where it is a conditional error, if S is not a directory before the start of the phase function, it
is a fatal error, unless all of the following conditions are true, in which case the fallback to WORKDIR
is used:

• The A variable contains no items.
• The phase function in question is not in DEFINED_PHASES.
• None of the phase functions unpack, prepare, configure, compile or install, if sup-

ported by the EAPI in question and occurring prior to the phase about to be executed, are in
DEFINED_PHASES.

9.1.2 pkg_pretend

PKG-PRETENDThe pkg_pretend function is only called for EAPIs listed in table 9.2 as supporting it.

37

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 38

Table 9.1: EAPIs with S to WORKDIR fallbacks

EAPI Fallback to WORKDIR permitted?

0, 1, 2, 3 Always
4, 5, 6 Conditional error

Table 9.2: EAPIs supporting pkg_pretend

EAPI Supports pkg_pretend?

0, 1, 2, 3 No
4, 5, 6 Yes

The pkg_pretend function may be used to carry out sanity checks early on in the install process.
For example, if an ebuild requires a particular kernel configuration, it may perform that check in
pkg_pretend and call eerror and then die with appropriate messages if the requirement is not
met.

pkg_pretend is run separately from the main phase function sequence, and does not participate in
any kind of environment saving. There is no guarantee that any of an ebuild’s dependencies will be
met at this stage, and no guarantee that the system state will not have changed substantially before
the next phase is executed.

pkg_pretend must not write to the filesystem.

9.1.3 pkg_setup

The pkg_setup function sets up the ebuild’s environment for all following functions, before the build
process starts. Further, it checks whether any necessary prerequisites not covered by the package
manager, e. g. that certain kernel configuration options are fulfilled.

pkg_setup must be run with full filesystem permissions, including the ability to add new users
and/or groups to the system.

9.1.4 src_unpack

SRC-UNPACKThe src_unpack function extracts all of the package’s sources. In EAPIs lacking src_prepare, it
may also apply patches and set up the package’s build system for further use.

The initial working directory must be WORKDIR, and the default implementation used when the ebuild
lacks the src_unpack function shall behave as:

Listing 9.1 src_unpack
src_unpack() {

if [[-n ${A}]]; then
unpack ${A}

fi
}

9.1.5 src_prepare

SRC-PREPAREThe src_prepare function is only called for EAPIs listed in table 9.3 as supporting it. The src_
prepare function can be used for post-unpack source preparation.

The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 39

Table 9.3: src_prepare support and behaviour for EAPIs

EAPI Supports src_prepare? Format

0, 1 No Not applicable
2, 3, 4, 5 Yes no-op
6 Yes 6

Table 9.4: EAPIs supporting src_configure

EAPI Supports src_configure?

0, 1 No
2, 3, 4, 5, 6 Yes

SRC-PREPARE-6For EAPIs listed in table 9.3 as using format 6, the default implementation used when the ebuild
lacks the src_prepare function shall behave as:

Listing 9.2 src_prepare, format 6
src_prepare() {

if declare -p PATCHES | grep -q "^declare -a "; then
[[-n ${PATCHES[@]}]] && eapply "${PATCHES[@]}"

else
[[-n ${PATCHES}]] && eapply ${PATCHES}

fi
eapply_user

}

For other EAPIs supporting src_prepare, the default implementation used when the ebuild lacks
the src_prepare function is a no-op.

9.1.6 src_configure

SRC-CONFIGUREThe src_configure function is only called for EAPIs listed in table 9.4 as supporting it.

The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

The src_configure function configures the package’s build environment. The default implemen-
tation used when the ebuild lacks the src_configure function shall behave as:

Listing 9.3 src_configure
src_configure() {

if [[-x ${ECONF_SOURCE:-.}/configure]]; then
econf

fi
}

9.1.7 src_compile

SRC-COMPILEThe src_compile function configures the package’s build environment in EAPIs lacking src_
configure, and builds the package in all EAPIs.

The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

SRC-COMPILE-0For EAPIs listed in table 9.5 as using format 0, the default implementation used when the ebuild
lacks the src_compile function shall behave as:

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 40

Table 9.5: src_compile behaviour for EAPIs

EAPI Format

0 0
1 1
2, 3, 4, 5, 6 2

Listing 9.4 src_compile, format 0
src_compile() {

if [[-x ./configure]]; then
econf

fi
if [[-f Makefile]] || [[-f GNUmakefile]] || [[-f makefile]]; then

emake || die "emake failed"
fi

}

SRC-COMPILE-1For EAPIs listed in table 9.5 as using format 1, the default implementation used when the ebuild
lacks the src_compile function shall behave as:

Listing 9.5 src_compile, format 1
src_compile() {

if [[-x ${ECONF_SOURCE:-.}/configure]]; then
econf

fi
if [[-f Makefile]] || [[-f GNUmakefile]] || [[-f makefile]]; then

emake || die "emake failed"
fi

}

SRC-COMPILE-2For EAPIs listed in table 9.5 as using format 2, the default implementation used when the ebuild
lacks the src_compile function shall behave as:

Listing 9.6 src_compile, format 2
src_compile() {

if [[-f Makefile]] || [[-f GNUmakefile]] || [[-f makefile]]; then
emake || die "emake failed"

fi
}

9.1.8 src_test

The src_test function runs unit tests for the newly built but not yet installed package as provided.

The initial working directory must be S if that exists, falling back to WORKDIR otherwise. The default
implementation used when the ebuild lacks the src_test function must, if tests are enabled, run
emake check if and only if such a target is available, or if not run emake test if and only if such
a target is available. In both cases, if emake returns non-zero the build must be aborted.

PARALLEL-TESTSFor EAPIs listed in table 9.6 as not supporting parallel tests, the emake command must be called
with option -j1.

The src_test function may be disabled by RESTRICT. See section 8.2.8. It may be disabled by
user too, using a PM-specific mechanism.

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 41

Table 9.6: src_test behaviour for EAPIs

EAPI Supports parallel tests?

0, 1, 2, 3, 4 No
5, 6 Yes

Table 9.7: src_install behaviour for EAPIs

EAPI Format

0, 1, 2, 3 no-op
4, 5 4
6 6

9.1.9 src_install

SRC-INSTALLThe src_install function installs the package’s content to a directory specified in D.

The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

SRC-INSTALL-4For EAPIs listed in table 9.7 as using format 4, the default implementation used when the ebuild
lacks the src_install function shall behave as:

Listing 9.7 src_install, format 4
src_install() {

if [[-f Makefile]] || [[-f GNUmakefile]] || [[-f makefile]]; then
emake DESTDIR="${D}" install

fi

if ! declare -p DOCS >/dev/null 2>&1 ; then
local d
for d in README* ChangeLog AUTHORS NEWS TODO CHANGES \

THANKS BUGS FAQ CREDITS CHANGELOG ; do
[[-s "${d}"]] && dodoc "${d}"

done
elif declare -p DOCS | grep -q "^declare -a " ; then

dodoc "${DOCS[@]}"
else

dodoc ${DOCS}
fi

}

SRC-INSTALL-6For EAPIs listed in table 9.7 as using format 6, the default implementation used when the ebuild
lacks the src_install function shall behave as:

Listing 9.8 src_install, format 6
src_install() {

if [[-f Makefile]] || [[-f GNUmakefile]] || [[-f makefile]]; then
emake DESTDIR="${D}" install

fi
einstalldocs

}

For other EAPIs, the default implementation used when the ebuild lacks the src_install function
is a no-op.

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 42

9.1.10 pkg_preinst

The pkg_preinst function performs any special tasks that are required immediately before merging
the package to the live filesystem. It must not write outside of the directories specified by the ROOT
and D environment variables.

pkg_preinst must be run with full access to all files and directories below that specified by the
ROOT and D environment variables.

9.1.11 pkg_postinst

The pkg_postinst function performs any special tasks that are required immediately after merging
the package to the live filesystem. It must not write outside of the directory specified in the ROOT
environment variable.

pkg_postinst, like, pkg_preinst, must be run with full access to all files and directories below
that specified by the ROOT environment variable.

9.1.12 pkg_prerm

The pkg_prerm function performs any special tasks that are required immediately before unmerging
the package from the live filesystem. It must not write outside of the directory specified by the ROOT
environment variable.

pkg_prerm must be run with full access to all files and directories below that specified by the ROOT
environment variable.

9.1.13 pkg_postrm

The pkg_postrm function performs any special tasks that are required immediately after unmerging
the package from the live filesystem. It must not write outside of the directory specified by the ROOT
environment variable.

pkg_postrm must be run with full access to all files and directories below that specified by the ROOT
environment variable.

9.1.14 pkg_config

The pkg_config function performs any custom steps required to configure a package after it has
been fully installed. It is the only ebuild function which may be interactive and prompt for user
input.

pkg_config must be run with full access to all files and directories inside of ROOT.

9.1.15 pkg_info

PKG-INFOThe pkg_info function may be called by the package manager when displaying information about an
installed package. In EAPIs listed in table 9.8 as supporting pkg_info on non-installed packages,
it may also be called by the package manager when displaying information about a non-installed
package. In this case, ebuild authors should note that dependencies may not be installed.

pkg_info must not write to the filesystem.

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 43

Table 9.8: EAPIs supporting pkg_info on non-installed packages

EAPI Supports pkg_info on non-installed packages?

0, 1, 2, 3 No
4, 5, 6 Yes

Table 9.9: EAPIs supporting default_ phase functions

EAPI Supports default_ functions in phases

0, 1 None
2, 3 pkg_nofetch, src_unpack, src_prepare, src_configure,

src_compile, src_test
4, 5, 6 pkg_nofetch, src_unpack, src_prepare, src_configure,

src_compile, src_install, src_test

9.1.16 pkg_nofetch

The pkg_nofetch function is run when the fetch phase of an fetch-restricted ebuild is run, and the
relevant source files are not available. It should direct the user to download all relevant source files
from their respective locations, with notes concerning licensing if applicable.

pkg_nofetch must require no write access to any part of the filesystem.

9.1.17 default_ Phase Functions

DEFAULT-PHASE-FUNCSIn EAPIs listed in table 9.9 as supporting default_ phase functions, a function named default_
(phase) that behaves as the default implementation for that EAPI shall be defined when executing
any ebuild phase listed in the table. Ebuilds must not call these functions except when in the phase
in question.

9.2 Call Order

The call order for installing a package is:

• pkg_pretend (only for EAPIs listed in table 9.2), which is called outside of the normal call
order process.

• pkg_setup
• src_unpack
• src_prepare (only for EAPIs listed in table 9.3)
• src_configure (only for EAPIs listed in table 9.4)
• src_compile
• src_test (except if RESTRICT=test or disabled by user)
• src_install
• pkg_preinst
• pkg_postinst

The call order for uninstalling a package is:

• pkg_prerm
• pkg_postrm

The call order for upgrading, downgrading or reinstalling a package is:

• pkg_pretend (only for EAPIs listed in table 9.2), which is called outside of the normal call
order process.

• pkg_setup

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 44

• src_unpack
• src_prepare (only for EAPIs listed in table 9.3)
• src_configure (only for EAPIs listed in table 9.4)
• src_compile
• src_test (except if RESTRICT=test)
• src_install
• pkg_preinst
• pkg_prerm for the package being replaced
• pkg_postrm for the package being replaced
• pkg_postinst

Note: When up- or downgrading a package in EAPI 0 or 1, the last four phase functions can al-
ternatively be called in the order pkg_preinst, pkg_postinst, pkg_prerm, pkg_postrm. This
behaviour is deprecated.

The pkg_config, pkg_info and pkg_nofetch functions are not called in a normal sequence. The
pkg_pretend function is called some unspecified time before a (possibly hypothetical) normal se-
quence.

For installing binary packages, the src phases are not called.

When building binary packages that are not to be installed locally, the pkg_preinst and pkg_
postinst functions are not called.

Chapter 10

Eclasses

Eclasses serve to store common code that is used by more than one ebuild, which greatly aids main-
tainability and reduces the tree size. However, due to metadata cache issues, care must be taken in
their use. In format they are similar to an ebuild, and indeed are sourced as part of any ebuild using
them. The interpreter is therefore the same, and the same requirements for being parseable hold.

Eclasses must be located in the eclass directory in the top level of the repository—see section 4.6.
Each eclass is a single file named <name>.eclass, where <name> is the name of this eclass, used
by inherit and EXPORT_FUNCTIONS among other places.

10.1 The inherit command

An ebuild wishing to make use of an eclass does so by using the inherit command in global scope.
This will cause the eclass to be sourced as part of the ebuild—any function or variable definitions
in the eclass will appear as part of the ebuild, with exceptions for certain metadata variables, as
described below.

The inherit command takes one or more parameters, which must be the names of eclasses (exclud-
ing the .eclass suffix and the path). For each parameter, in order, the named eclass is sourced.

Eclasses may end up being sourced multiple times.

The inherit command must also ensure that:

• The ECLASS variable is set to the name of the current eclass, when sourcing that eclass.
• Once all inheriting has been done, the INHERITED metadata variable contains the name of

every eclass used, separated by whitespace.

10.2 Eclass-defined Metadata Keys

The IUSE, REQUIRED_USE, DEPEND, RDEPEND and PDEPEND variables are handled specially when
set by an eclass. They must be accumulated across eclasses, appending the value set by each eclass
to the resulting value after the previous one is loaded. Then the eclass-defined value is appended to
that defined by the ebuild. In the case of RDEPEND, this is done after the implicit RDEPEND rules in
section 7.3.3 are applied.

10.3 EXPORT_FUNCTIONS

There is one command available in the eclass environment that is neither available nor meaningful in
ebuilds—EXPORT_FUNCTIONS. This can be used to alias ebuild phase functions from the eclass so

45

CHAPTER 10. ECLASSES 46

Listing 10.1 EXPORT_FUNCTIONS example: foo.eclass
foo_src_compile()
{

econf --enable-gerbil \
$(use_enable fnord)

emake gerbil || die "Couldn’t make a gerbil"
emake || die "emake failed"

}

EXPORT_FUNCTIONS src_compile

that an ebuild inherits a default definition whilst retaining the ability to override and call the eclass-
defined version from it. The use of it is best illustrated by an example; this is given in listing 10.1
and is a snippet from a hypothetical foo.eclass.

This example defines an eclass src_compile function and uses EXPORT_FUNCTIONS to alias it.
Then any ebuild that inherits foo.eclass will have a default src_compile defined, but should the
author wish to override it he can access the function in foo.eclass by calling foo_src_compile.

EXPORT_FUNCTIONS must only be used on ebuild phase functions. The function that is aliased must
be named eclassname_phasefunctionname, where eclassname is the name of the eclass.

Chapter 11

The Ebuild Environment

11.1 Defined Variables

The package manager must define the following environment variables. Not all variables are mean-
ingful in all phases; variables that are not meaningful in a given phase may be unset or set to any
value. Ebuilds must not attempt to modify any of these variables, unless otherwise specified.

Because of their special meanings, these variables may not be preserved consistently across all phases
as would normally happen due to environment saving (see 11.2). For example, EBUILD_PHASE is
different for every phase, and ROOT may have changed between the various different pkg_* phases.
Ebuilds must recalculate any variable they derive from an inconsistent variable.

47

C
H

A
PT

E
R

11.
T

H
E

E
B

U
IL

D
E

N
V

IR
O

N
M

E
N

T
48

Table 11.1: Defined variables

Variable Legal in Consistent? Description

P All No2 Package name and version, without the revision part. For example, vim-7.0.174.
PN All Ditto Package name, for example vim.
CATEGORY All Ditto The package’s category, for example app-editors.
PV All Yes Package version, with no revision. For example 7.0.174.
PR All Yes Package revision, or r0 if none exists.
PVR All Yes Package version and revision (if any), for example 7.0.174 or 7.0.174-r1.
PF All Yes Package name, version, and revision (if any), for example vim-7.0.174-r1.
A src_* Yes All source files available for the package, whitespace separated with no leading or trail-

ing whitespace, and in the order in which the item first appears in a matched component
of SRC_URI. Does not include any that are disabled because of USE conditionals. The
value is calculated from the base names of each element of the SRC_URI ebuild metadata
variable.

AA3 src_* YesAA All source files that could be available for the package, including any that are disabled
in A because of USE conditionals. The value is calculated from the base names of each
element of the SRC_URI ebuild metadata variable. Only for EAPIs listed in table 11.3 as
supporting AA.

FILESDIR src_*4 No The full path to the package’s files directory, used for small support files or patches.
See section 4.3. May or may not exist; if a repository provides no support files for the
package in question then an ebuild must be prepared for the situation where FILESDIR
points to a non-existent directory.

PORTDIR Ditto No The full path to the master repository’s base directory.
DISTDIR Ditto No The full path to the directory in which the files in the A variable are stored.
ECLASSDIR Ditto No The full path to the master repository’s eclass directory.

2May change if a package has been updated (see 4.4.4)
3This variable is generally considered deprecated. However, ebuilds must still assume that the package manager sets it in the EAPIs supporting it. For example, a few configure scripts use this variable to find the

aalib package; ebuilds calling such configure scripts must thus work around this.
4Not necessarily present when installing from a binary package

C
H

A
PT

E
R

11.
T

H
E

E
B

U
IL

D
E

N
V

IR
O

N
M

E
N

T
49

Variable Legal in Consistent? Description

ROOT pkg_* No The absolute path to the root directory into which the package is to be merged. Phases
which run with full filesystem access must not touch any files outside of the directory
given in ROOT. Also of note is that in a cross-compiling environment, binaries inside of
ROOT will not be executable on the build machine, so ebuilds must not call them. ROOT
must be non-empty and end in a trailing slash.

EROOT pkg_* No Contains the path ${ROOT%/}${EPREFIX}/ for convenience. See also the EPREFIX
variable. Only for EAPIs listed in table 11.4 as supporting EROOT.

T All Partially5 The full path to a temporary directory for use by the ebuild.
TMPDIR All Ditto Must be set to the location of a usable temporary directory, for any applications called

by an ebuild. Must not be used by ebuilds directly; see T above.
HOME All Ditto The full path to an appropriate temporary directory for use by any programs invoked by

the ebuild that may read or modify the home directory.
EPREFIX All Yes The normalised offset-prefix path of an offset installation. When EPREFIX is not set

in the calling environment, EPREFIX defaults to the built-in offset-prefix that was set
during installation of the package manager. When a different EPREFIX value than the
built-in value is set in the calling environment, a cross-prefix build is performed where
using the existing utilities, a package is built for the given EPREFIX, akin to ROOT. See
also 11.1.3. Only for EAPIs listed in table 11.4 as supporting EPREFIX.

D src_install No Contains the full path to the image directory into which the package should be installed.
Must be non-empty and end in a trailing slash.

D (continued) pkg_preinst,
pkg_postinst

Yes Contains the full path to the image that is about to be or has just been merged. Must be
non-empty and end in a trailing slash.

ED src_install,
pkg_preinst,
pkg_postinst

See D Contains the path ${D%/}${EPREFIX}/ for convenience. See also the EPREFIX vari-
able. Only for EAPIs listed in table 11.4 as supporting ED.

DESTTREE src_install No Controls the location where dobin, dolib, domo, and dosbin install things.
INSDESTTREE src_install No Controls the location where doins installs things.
USE All Yes A whitespace-delimited list of all active USE flags for this ebuild. See section 11.1.1 for

details.

5Consistent and preserved across a single connected sequence of install or uninstall phases, but not between install and uninstall. When reinstalling a package, this variable must have different values for the install and
the replacement.

C
H

A
PT

E
R

11.
T

H
E

E
B

U
IL

D
E

N
V

IR
O

N
M

E
N

T
50

Variable Legal in Consistent? Description

EBUILD_PHASE All No Takes one of the values config, setup, nofetch, unpack, prepare, configure,
compile, test, install, preinst, postinst, prerm, postrm, info, pretend ac-
cording to the top level ebuild function that was executed by the package manager. May
be unset or any single word that is not any of the above when the ebuild is being sourced
for other (e. g. metadata or QA) purposes.

EBUILD_PHASE_FUNC All NoEBUILD-PHASE-FUNC Takes one of the values pkg_config, pkg_setup, pkg_nofetch, src_unpack, src_
prepare, src_configure, src_compile, src_test, src_install, pkg_preinst,
pkg_postinst, pkg_prerm, pkg_postrm, pkg_info, pkg_pretend according to the
top level ebuild function that was executed by the package manager. May be unset
or any single word that is not any of the above when the ebuild is being sourced for
other (e. g. metadata or QA) purposes. Only for EAPIs listed in table 11.2 as supporting
EBUILD_PHASE_FUNC.

WORKDIR src_*,
global scope

Yes The full path to the ebuild’s working directory, in which all build data should be con-
tained.

S src_* Yes The full path to the temporary build directory, used by src_compile, src_install
etc. Defaults to ${WORKDIR}/${P}. May be modified by ebuilds. If S is assigned in the
global scope of an ebuild, then the restrictions of section 11.2 for global variables apply.

KV All YesKV The version of the running kernel at the time the ebuild was first executed, as returned
by the uname -r command or equivalent. May be modified by ebuilds. Only for EAPIs
listed in table 11.3 as supporting KV.

MERGE_TYPE pkg_* NoMERGE-TYPE The type of package that is being merged. Possible values are: source if building and
installing a package from source, binary if installing a binary package, and buildonly
if building a binary package without installing it. Only for EAPIs listed in table 11.2 as
supporting MERGE_TYPE.

REPLACING_VERSIONS pkg_* (see text) Yes A whitespace-separated list of versions of this package (including revision, if specified)
that are being replaced (uninstalled or overwritten) as a result of this install. See sec-
tion 11.1.2. Only for EAPIs listed in table 11.2 as supporting REPLACING_VERSIONS.

REPLACED_BY_VERSION pkg_prerm,
pkg_postrm

Yes The single version of this package (including revision, if specified) that is replacing us,
if we are being uninstalled as part of an install, or an empty string otherwise. See sec-
tion 11.1.2. Only for EAPIs listed in table 11.2 as supporting REPLACED_BY_VERSION.

CHAPTER 11. THE EBUILD ENVIRONMENT 51

Table 11.2: EAPIs supporting various added env variables

EAPI MERGE_TYPE? REPLACING_VERSIONS? REPLACED_BY_VERSION? EBUILD_PHASE_FUNC?

0, 1, 2, 3 No No No No
4 Yes Yes Yes No
5, 6 Yes Yes Yes Yes

Table 11.3: EAPIs supporting various removed env variables

EAPI AA? KV?

0, 1, 2, 3 Yes Yes
4, 5, 6 No No

Except where otherwise noted, all variables set in the active profiles’ make.defaults files must
be exported to the ebuild environment. CHOST, CBUILD and CTARGET, if not set by profiles, must
contain either an appropriate machine tuple (the definition of appropriate is beyond the scope of this
specification) or be unset.

PATH must be initialized by the package manager to a “usable” default. The exact value here is left
up to interpretation, but it should include the equivalent “sbin” and “bin” and any package manager
specific directories.

GZIP, BZIP, BZIP2, CDPATH, GREP_OPTIONS, GREP_COLOR and GLOBIGNORE must not be set.

LOCALE-SETTINGSThe package manager must ensure that the LC_CTYPE and LC_COLLATE locale categories are equiva-
lent to the POSIX locale, as far as characters in the ASCII range (U+0000 to U+007F) are concerned.
Only for EAPIs listed in such a manner in table 11.5.

11.1.1 USE and IUSE Handling

This section discusses the handling of four variables:

IUSE is the variable calculated from the IUSE values defined in ebuilds and eclasses.

IUSE_REFERENCEABLE is a variable calculated from IUSE and a variety of other sources de-
scribed below. It is purely a conceptual variable; it is not exported to the ebuild environment.
Values in IUSE_REFERENCEABLE may legally be used in queries from other packages about an
ebuild’s state (for example, for use dependencies).

IUSE_EFFECTIVE is another conceptual, unexported variable. Values in IUSE_EFFECTIVE are
those which an ebuild may legally use in queries about itself (for example, for the use function,
and for use in dependency specification conditional blocks).

USE is a variable calculated by the package manager and exported to the ebuild environment.

In all cases, the values of IUSE_REFERENCEABLE and IUSE_EFFECTIVE are undefined during meta-
data generation.

For EAPIs listed in table 5.2 as not supporting profile defined IUSE injection, IUSE_REFERENCEABLE
is equal to the calculated IUSE value. For EAPIs where profile defined IUSE injection is supported,
IUSE_REFERENCEABLE is equal to IUSE_EFFECTIVE.

Table 11.4: EAPIs supporting offset-prefix env variables

EAPI EPREFIX? EROOT? ED?

0, 1, 2 No No No
3, 4, 5, 6 Yes Yes Yes

CHAPTER 11. THE EBUILD ENVIRONMENT 52

Table 11.5: Locale settings for EAPIs

EAPI Sane LC_CTYPE and LC_COLLATE?

0, 1, 2, 3, 4, 5 Undefined
6 Yes

For EAPIs listed in table 5.2 as not supporting profile defined IUSE injection, IUSE_EFFECTIVE
contains the following values:

• All values in the calculated IUSE value.
• All possible values for the ARCH variable.
• All legal use flag names whose name starts with the lowercase equivalent of any value in the

profile USE_EXPAND variable followed by an underscore.

PROFILE-IUSE-INJECTFor EAPIs listed in table 5.2 as supporting profile defined IUSE injection, IUSE_EFFECTIVE contains
the following values:

• All values in the calculated IUSE value.
• All values in the profile IUSE_IMPLICIT variable.
• All values in the profile variable named USE_EXPAND_VALUES_${v}, where ${v} is any value

in the intersection of the profile USE_EXPAND_UNPREFIXED and USE_EXPAND_IMPLICIT vari-
ables.

• All values for ${lower_v}_${x}, where ${x} is all values in the profile variable named USE_
EXPAND_VALUES_${v}, where ${v} is any value in the intersection of the profile USE_EXPAND
and USE_EXPAND_IMPLICIT variables and ${lower_v} is the lowercase equivalent of ${v}.

The USE variable is set by the package manager. For each value in IUSE_EFFECTIVE, USE shall
contain that value if the flag is to be enabled for the ebuild in question, and shall not contain that
value if it is to be disabled. In EAPIs listed in table 5.2 as not supporting profile defined IUSE
injection, USE may contain other flag names that are not relevant for the ebuild.

For EAPIs listed in table 5.2 as supporting profile defined IUSE injection, the variables named in
USE_EXPAND and USE_EXPAND_UNPREFIXED shall have their profile-provided values reduced to con-
tain only those values that are present in IUSE_EFFECTIVE.

For EAPIs listed in table 5.2 as supporting profile defined IUSE injection, the package manager must
save the calculated value of IUSE_EFFECTIVE when installing a package. Details are beyond the
scope of this specification.

11.1.2 REPLACING_VERSIONS and REPLACED_BY_VERSION

REPLACE-VERSION-VARSIn EAPIs listed in table 11.2 as supporting it, the REPLACING_VERSIONS variable shall be defined in
pkg_preinst and pkg_postinst. In addition, it may be defined in pkg_pretend and pkg_setup,
although ebuild authors should take care to handle binary package creation and installation correctly
when using it in these phases.

REPLACING_VERSIONS is a list, not a single optional value, to handle pathological cases such as
installing foo-2:2 to replace foo-2:1 and foo-3:2.

In EAPIs listed in table 11.2 as supporting it, the REPLACED_BY_VERSION variable shall be defined
in pkg_prerm and pkg_postrm. It shall contain at most one value.

11.1.3 Offset-prefix variables EPREFIX, EROOT and ED

OFFSET-PREFIX-VARSTable 11.6 lists the EAPIs which support offset-prefix installations. This support was initially added
in EAPI 3, in the form of three extra variables. Two of these, EROOT and ED, are convenience
variables using the variable EPREFIX. In EAPIs that do not support an offset-prefix, the installa-
tion offset is hardwired to /usr. In offset-prefix supporting EAPIs the installation offset is set as
${EPREFIX}/usr and hence can be adjusted using the variable EPREFIX. Note that the behaviour of

CHAPTER 11. THE EBUILD ENVIRONMENT 53

Table 11.6: EAPIs supporting offset-prefix

EAPI Supports offset-prefix?

0, 1, 2 No
3, 4, 5, 6 Yes

Listing 11.1 Environment state between functions
GLOBAL_VARIABLE="a"

src_compile()
{

GLOBAL_VARIABLE="b"
DEFAULT_VARIABLE="c"
export EXPORTED_VARIABLE="d"
local LOCAL_VARIABLE="e"

}

src_install(){
[[${GLOBAL_VARIABLE} == "a"]] \

|| [[${GLOBAL_VARIABLE} == "b"]] \
|| die "broken env saving for globals"

[[${DEFAULT_VARIABLE} == "c"]] \
|| die "broken env saving for default"

[[${EXPORTED_VARIABLE} == "d"]] \
|| die "broken env saving for exported"

[[$(printenv EXPORTED_VARIABLE) == "d"]] \
|| die "broken env saving for exported"

[[-z ${LOCAL_VARIABLE}]] \
|| die "broken env saving for locals"

}

offset-prefix aware and agnostic is the same when EPREFIX is set to the empty string in offset-prefix
aware EAPIs. The latter do have the variables ED and EROOT properly set, though.

11.2 The state of variables between functions

Exported and default scope variables are saved between functions. A non-local variable set in a
function earlier in the call sequence must have its value preserved for later functions, including
functions executed as part of a later uninstall.

Note: pkg_pretend is not part of the normal call sequence, and does not take part in environment
saving.

Variables that were exported must remain exported in later functions; variables with default visibility
may retain default visibility or be exported.

Variables with special meanings to the package manager are excluded from this rule.

Global variables must only contain invariant values (see 7.1). If a global variable’s value is invariant,
it may have the value that would be generated at any given point in the build sequence.

This is demonstrated by code listing 11.1.

CHAPTER 11. THE EBUILD ENVIRONMENT 54

Table 11.7: System commands for EAPIs

EAPI GNU find? failglob in global scope?

0, 1, 2, 3, 4 Undefined No
5 Yes No
6 Yes Yes

11.3 Available commands

This section documents the commands available to an ebuild. Unless otherwise specified, they may
be aliases, shell functions, or executables in the ebuild’s PATH.

When an ebuild is being sourced for metadata querying rather than for a build (that is to say, when
none of the src_ or pkg_ functions are to be called), no external command may be executed. The
package manager may take steps to enforce this.

11.3.1 System commands

Any ebuild not listed in the system set for the active profile(s) may assume the presence of every
command that is always provided by the system set for that profile. However, it must target the
lowest common denominator of all systems on which it might be installed—in most cases this means
that the only packages that can be assumed to be present are those listed in the base profile or
equivalent, which is inherited by all available profiles. If an ebuild requires any applications not
provided by the system profile, or that are provided conditionally based on USE flags, appropriate
dependencies must be used to ensure their presence.

11.3.1.1 Guaranteed system commands

The following commands must always be available in the ebuild environment:

• All builtin commands in GNU bash, version as listed in table 6.1 on page 26.
• sed must be available, and must support all forms of invocations valid for GNU sed version 4

or later.
• patch must be available, and must support all inputs valid for GNU patch.
• GNU-FINDfind and xargs must be available, and must support all forms of invocations valid for GNU

findutils version 4.4 or later. Only for EAPIs listed in table 11.7 as requiring GNU find.

11.3.1.2 Shell options

FAILGLOBFor EAPIs listed such in table 11.7, the failglob option of bash is set in the global scope of ebuilds.
If set, failed pattern matches during filename expansion result in an error when the ebuild is being
sourced.

11.3.2 Commands provided by package dependencies

In some cases a package’s build process will require the availability of executables not provided by
the core system, a common example being autotools. The availability of commands provided by the
particular types of dependencies is explained in section 8.1.

11.3.3 Ebuild-specific Commands

The following commands will always be available in the ebuild environment, provided by the pack-
age manager. Except where otherwise noted, they may be internal (shell functions or aliases) or

CHAPTER 11. THE EBUILD ENVIRONMENT 55

Table 11.8: EAPI Command Failure Behaviour

EAPI Command failure behaviour Supports nonfatal?

0, 1, 2, 3 Non-zero exit No
4, 5, 6 Aborts Yes

Table 11.9: Banned commands

EAPI Command banned?
dohard dosed einstall

0, 1, 2, 3 No No No
4, 5 Yes Yes No
6 Yes Yes Yes

external commands available in PATH; where this is not specified, ebuilds may not rely upon either
behaviour.

Unless otherwise noted, any output of these commands ends with a newline.

11.3.3.1 Failure behaviour and related commands

DIE-ON-FAILUREWhere a command is listed as having EAPI dependent failure behaviour, a failure shall either result
in a non-zero exit status or abort the build process, as determined by table 11.8.

The following commands affect this behaviour:

nonfatal NONFATALExecutes the remainder of its arguments as a command, preserving the exit status. If this
results in a command being called that would normally abort the build process due to a failure,
instead a non-zero exit status shall be returned. Only in EAPIs listed in table 11.8 as supporting
nonfatal.

Explicit die or assert commands only respect nonfatal when called with the -n option and
in EAPIs supporting this option, see table 11.10.

11.3.3.2 Banned commands

BANNED-COMMANDSSome commands are banned in some EAPIs. If a banned command is called, the package manager
must abort the build process indicating an error.

11.3.3.3 Sandbox commands

These commands affect the behaviour of the sandbox. Each command takes a single directory as
argument. Ebuilds must not run any of these commands once the current phase function has returned.

addread Add a directory to the permitted read list.

addwrite Add a directory to the permitted write list.

addpredict Add a directory to the predict list. Any write to a location in this list will be denied, but
will not trigger access violation messages or abort the build process.

adddeny Add a directory to the deny list.

CHAPTER 11. THE EBUILD ENVIRONMENT 56

11.3.3.4 Package manager query commands

These commands are used to extract information about the system. Ebuilds must not run any of these
commands in parallel with any other package manager command. Ebuilds must not run any of these
commands once the current phase function has returned.

HOST-ROOT-OPTIONIn EAPIs listed in table 11.18 as supporting option --host-root, this flag as the first argument will
cause the query to apply to the host root instead of ROOT.

has_version Takes exactly one package dependency specification as an argument. Returns true if a
package matching the specification is installed in ROOT, and false otherwise.

best_version Takes exactly one package dependency specification as an argument. If a matching
package is installed, prints the category, package name and version of the highest matching
version; otherwise, prints an empty string. The exit code is unspecified.

11.3.3.5 Output commands

These commands display messages to the user. Unless otherwise stated, the entire argument list is
used as a message, with backslash-escaped characters interpreted as for the echo -e command of
bash, notably \t for a horizontal tab, \n for a new line, and \\ for a literal backslash. Ebuilds must
not run any of these commands once the current phase function has returned. Unless otherwise noted,
output may be sent to stdout, stderr or some other appropriate facility.

einfo Displays an informational message.

einfon Displays an informational message without a trailing newline.

elog Displays an informational message of slightly higher importance. The package manager may
choose to log elog messages by default where einfo messages are not, for example.

ewarn Displays a warning message. Must not go to stdout.

eerror Displays an error message. Must not go to stdout.

ebegin Displays an informational message. Should be used when beginning a possibly lengthy
process, and followed by a call to eend.

eend Indicates that the process begun with an ebegin message has completed. Takes one fixed ar-
gument, which is a numeric return code, and an optional message in all subsequent arguments.
If the first argument is 0, prints a success indicator; otherwise, prints the message followed by
a failure indicator. Returns its first argument as exit status.

11.3.3.6 Error commands

These commands are used when an error is detected that will prevent the build process from com-
pleting. Ebuilds must not run any of these commands once the current phase function has returned.

die NONFATAL-DIEIf called under the nonfatal command (as per section 11.3.3.1) and with -n as its first parame-
ter, displays a failure message provided in its following argument and then returns a non-zero
exit status. Only in EAPIs listed in table 11.10 as supporting option -n. Otherwise, displays a
failure message provided in its first and only argument, and then aborts the build process. die
is not guaranteed to work correctly if called from a subshell environment.

assert Checks the value of the shell’s pipe status variable, and if any component is non-zero (indi-
cating failure), calls die, passing any parameters to it.

11.3.3.7 Patch commands

These commands are used during the src_prepare phase to apply patches to the package’s sources.
Ebuilds must not run any of these commands once the current phase function has returned.

CHAPTER 11. THE EBUILD ENVIRONMENT 57

Table 11.10: EAPIs supporting -n for die and assert commands

EAPI die and assert support -n?

0, 1, 2, 3, 4, 5 No
6 Yes

eapply EAPPLYTakes zero or more GNU patch options, followed by one or more file or directory paths. Pro-
cesses options and applies all patches found in specified locations according to Algorithm 11.1.
If applying the patches fails, it aborts the build using die, unless run using nonfatal, in which
case it returns non-zero exit status. Only available in EAPIs listed in table 11.11 as supporting
eapply.

eapply_user EAPPLY-USERTakes no arguments. Package managers supporting it apply user-provided patches to
the source tree in the current working directory. Exact behaviour is implementation defined and
beyond the scope of this specification. Package managers not supporting it must implement
the command as a no-op. Returns shell true (0) if patches applied successfully, or if no patches
were provided. Otherwise, aborts the build process, unless run using nonfatal, in which case
it returns non-zero exit status. Only available in EAPIs listed in table 11.11 as supporting
eapply_user. In EAPIs where it is supported, eapply_user must be called once in the
src_prepare phase. For any subsequent calls, the command will do nothing and return 0.

Algorithm 11.1 eapply logic

1: if any parameter is equal to "--" then
2: collect all parameters before the first "--" in the options array
3: collect all parameters after the first "--" in the files array
4: else if any parameter that begins with a hyphen follows one that does not then
5: abort the build process with an error
6: else
7: collect all parameters beginning with a hyphen in the options array
8: collect all remaining parameters in the files array
9: end if

10: if the files array is empty then
11: abort the build process with an error
12: end if
13: for all x in the files array do
14: if $x is a directory then
15: if not any files match $x/*.diff or $x/*.patch then
16: abort the build process with an error
17: end if
18: for all files f matching $x/*.diff or $x/*.patch, sorted in POSIX locale do
19: call patch -p1 -f -g0 --no-backup-if-mismatch "${options[@]}" < "$f"
20: if child process returned with non-zero exit status then
21: return immediately with that status
22: end if
23: end for
24: else
25: call patch -p1 -f -g0 --no-backup-if-mismatch "${options[@]}" < "$x"
26: if child process returned with non-zero exit status then
27: return immediately with that status
28: end if
29: end if
30: end for
31: return shell true (0)

CHAPTER 11. THE EBUILD ENVIRONMENT 58

Table 11.11: Patch commands for EAPIs

EAPI eapply? eapply_user?

0, 1, 2, 3, 4, 5 No No
6 Yes Yes

Table 11.12: Extra econf arguments for EAPIs

EAPI --disable-dependency-tracking --disable-silent-rules --docdir --htmldir

0, 1, 2, 3 No No No No
4 Yes No No No
5 Yes Yes No No
6 Yes Yes Yes Yes

11.3.3.8 Build commands

These commands are used during the src_configure, src_compile, and src_install phases to
run the package’s build commands. Ebuilds must not run any of these commands once the current
phase function has returned.

econf Calls the program’s ./configure script. This is designed to work with GNU Autoconf-
generated scripts. Any additional parameters passed to econf are passed directly to
./configure, after the default options below. econf will look in the current working
directory for a configure script unless the ECONF_SOURCE environment variable is set, in
which case it is taken to be the directory containing it. econf must pass the following options
to the configure script:

ECONF-OPTIONS

• --prefix must default to ${EPREFIX}/usr unless overridden by econf’s caller.

• --mandir must be ${EPREFIX}/usr/share/man

• --infodir must be ${EPREFIX}/usr/share/info

• --datadir must be ${EPREFIX}/usr/share

• --sysconfdir must be ${EPREFIX}/etc

• --localstatedir must be ${EPREFIX}/var/lib

• --docdir must be ${EPREFIX}/usr/share/doc/${PF}, if the EAPI is listed in ta-
ble 11.12 as using it. This option will only be passed if the string --docdir occurs
in the output of configure --help.

• --htmldir must be ${EPREFIX}/usr/share/doc/${PF}/html, if the EAPI is listed in
table 11.12 as using it. This option will only be passed if the string --htmldir occurs in
the output of configure --help.

• --host must be the value of the CHOST environment variable.

• --libdir must be set according to Algorithm 11.2.

• --disable-dependency-tracking, if the EAPI is listed in table 11.12 as using it. This op-
tion will only be passed if the string --disable-dependency-tracking occurs in the
output of configure --help.

• --disable-silent-rules, if the EAPI is listed in table 11.12 as using it. This option will only
be passed if the string --disable-silent-rules occurs in the output of configure
--help.

Note that the ${EPREFIX} component represents the same offset-prefix as described in Ta-
ble 11.1. It facilitates offset-prefix installations which is supported by EAPIs listed in Ta-

CHAPTER 11. THE EBUILD ENVIRONMENT 59

ble 11.4. When no offset-prefix installation is in effect, EPREFIX becomes the empty string,
making the behaviour of econf equal for both offset-prefix supporting and agnostic EAPIs.

econf must be implemented internally—that is, as a bash function and not an external script.
Should any portion of it fail, it must abort the build using die, unless run using nonfatal, in
which case it must return non-zero exit status.

Algorithm 11.2 econf --libdir logic

1: let prefix=${EPREFIX}/usr
2: if the caller specified --prefix=$p then
3: let prefix=$p
4: end if
5: let libdir=
6: if the ABI environment variable is set then
7: let libvar=LIBDIR_$ABI
8: if the environment variable named by libvar is set then
9: let libdir=the value of the variable named by libvar

10: end if
11: end if
12: if libdir is non-empty then
13: pass --libdir=$prefix/$libdir to configure
14: end if

emake Calls the $MAKE program, or GNU make if the MAKE variable is unset. Any arguments given
are passed directly to the make command, as are the user’s chosen MAKEOPTS. Arguments
given to emake override user configuration. See also section 11.3.1.1. emake must be an
external program and cannot be a function or alias—it must be callable from e. g. xargs.
Failure behaviour is EAPI dependent as per section 11.3.3.1.

einstall A shortcut for the command given in Listing 11.2. Any arguments given to einstall
are passed verbatim to emake, as shown. Failure behaviour is EAPI dependent as per sec-
tion 11.3.3.1. In EAPIs listed in table 11.9, this command is banned as per section 11.3.3.2.

The variable ED is defined as in Table 11.1 and depends on the use of an offset-prefix. When
such offset-prefix is absent, ED is equivalent to D. ED is always available in EAPIs that support
offset-prefix installations as listed in Table 11.4, hence EAPIs lacking offset-prefix support
should use D instead of ED in the command given in Listing 11.2. Variable libdir is an
auxiliary local variable whose value is determined by Algorithm 11.3.

Listing 11.2 einstall command
emake \

prefix="${ED}"/usr \
datadir="${ED}"/usr/share \
mandir="${ED}"/usr/share/man \
infodir="${ED}"/usr/share/info \
libdir="${ED}"/usr/${libdir} \
localstatedir="${ED}"/var/lib \
sysconfdir="${ED}"/etc \
-j1 \
"$@" \
install

11.3.3.9 Installation commands

These commands are used to install files into the staging area, in cases where the package’s make
install target cannot be used or does not install all needed files. Except where otherwise stated,
all filenames created or modified are relative to the staging directory including the offset-prefix ED
in offset-prefix aware EAPIs, or just the staging directory D in offset-prefix agnostic EAPIs. Existing

CHAPTER 11. THE EBUILD ENVIRONMENT 60

destination files are overwritten. These commands must all be external programs and not bash func-
tions or aliases—that is, they must be callable from xargs. Calling any of these commands without
a filename parameter is an error. Ebuilds must not run any of these commands once the current phase
function has returned.

dobin Installs the given files into DESTTREE/bin, where DESTTREE defaults to /usr. Gives the
files mode 0755 and transfers file ownership to the superuser or its equivalent on the system
or installation at hand. For instance on Gentoo Linux in a non-offset-prefix installation this
ownership is root:root, while on an offset-prefix aware installation this may be joe:users.
Failure behaviour is EAPI dependent as per section 11.3.3.1.

doconfd Installs the given config files into /etc/conf.d/, by default with file mode 0644. This
can be overridden by setting INSOPTIONS with the insopts function. Failure behaviour is
EAPI dependent as per section 11.3.3.1.

dodir Creates the given directories, by default with file mode 0755. This can be overridden by
setting DIROPTIONS with the diropts function. Failure behaviour is EAPI dependent as per
section 11.3.3.1.

dodoc DODOCInstalls the given files into a subdirectory under /usr/share/doc/${PF}/ with file mode
0644. The subdirectory is set by the most recent call to docinto. If docinto has not yet
been called, instead installs to the directory /usr/share/doc/${PF}/. For EAPIs listed in
table 11.13 as supporting -r, if the first argument is -r, any subsequent arguments that are
directories are installed recursively to the appropriate location; in any other case, it is an error
for a directory to be specified. Failure behaviour is EAPI dependent as per section 11.3.3.1.

doenvd Installs the given environment files into /etc/env.d/, by default with file mode 0644.
This can be overridden by setting INSOPTIONS with the insopts function. Failure behaviour
is EAPI dependent as per section 11.3.3.1.

doexe Installs the given files into the directory specified by the most recent exeinto call, by default
with file mode 0755. This can be overridden by setting EXEOPTIONS with the exeopts func-
tion. If exeinto has not yet been called, behaviour is undefined. Failure behaviour is EAPI
dependent as per section 11.3.3.1.

dohard Takes two parameters. Creates a hardlink from the second to the first. In EAPIs listed in
table 11.9, this command is banned as per section 11.3.3.2.

doheader DOHEADERInstalls the given header files into /usr/include/, by default with file mode 0644. This
can be overridden by setting INSOPTIONS with the insopts function. If the first argument is
-r, then operates recursively, descending into any directories given. Only available in EAPIs
listed in table 11.14 as supporting doheader. Failure behaviour is EAPI dependent as per
section 11.3.3.1.

dohtml Installs the given HTML files into a subdirectory under /usr/share/doc/$PF/. The sub-
directory is html by default, but this can be overridden with the docinto function. Files to be
installed automatically are determined by extension and the default extensions are css, gif,
htm, html, jpeg, jpg, js and png. These default extensions can be extended or reduced (see
below). The options that can be passed to dohtml are as follows:

-r — enables recursion into directories.

-V — enables verbosity.

-A — adds file type extensions to the default list.

-a — sets file type extensions to only those specified.

-f — list of files that are able to be installed.

-x — list of directories that files will not be installed from (only used in conjunction with
-r).

-p — sets a document prefix for installed files, not to be confused with the global offset-
prefix.

CHAPTER 11. THE EBUILD ENVIRONMENT 61

Failure behaviour is EAPI dependent as per section 11.3.3.1.

It is undefined whether a failure shall occur if -r is not specified and a directory is encountered.
Ebuilds must not rely upon any particular behaviour.

doinfo Installs the given GNU Info files into the /usr/share/info area with file mode 0644.
Failure behaviour is EAPI dependent as per section 11.3.3.1.

doinitd Installs the given initscript files into /etc/init.d, by default with file mode 0755. This
can be overridden by setting EXEOPTIONS with the exeopts function. Failure behaviour is
EAPI dependent as per section 11.3.3.1.

doins DOINSTakes one or more files as arguments and installs them into INSDESTTREE, by default with
file mode 0644. This can be overridden by setting INSOPTIONS with the insopts function.
If the first argument is -r, then operates recursively, descending into any directories given.
For EAPIs listed in table 11.15, doins must install symlinks as symlinks; for other EAPIs,
behaviour is undefined if any symlink is encountered. Failure behaviour is EAPI dependent as
per section 11.3.3.1.

dolib For each argument, installs it into the appropriate library subdirectory under DESTTREE, as
determined by Algorithm 11.3. The file mode is 0644 by default. This can be overridden by
setting LIBOPTIONS with the libopts function. Any symlinks are installed into the same
directory as relative links to their original target. Failure behaviour is EAPI dependent as per
section 11.3.3.1.

dolib.so As for dolib except each file is installed with mode 0755.

dolib.a As for dolib except each file is installed with mode 0644.

Algorithm 11.3 Determining the library directory

1: if CONF_LIBDIR_OVERRIDE is set in the environment then
2: return CONF_LIBDIR_OVERRIDE
3: end if
4: if CONF_LIBDIR is set in the environment then
5: let LIBDIR_default=CONF_LIBDIR
6: else
7: let LIBDIR_default=“lib”
8: end if
9: if ABI is set in the environment then

10: let abi=ABI
11: else if DEFAULT_ABI is set in the environment then
12: let abi=DEFAULT_ABI
13: else
14: let abi=“default”
15: end if
16: return the value of LIBDIR_$abi

doman Installs the given man pages into the appropriate subdirectory of /usr/share/man depend-
ing upon its apparent section suffix (e. g. foo.1 goes to /usr/share/man/man1/foo.1) with
file mode 0644.

DOMAN-LANGSIn EAPIs listed in table 11.16 as supporting language detection by filename, a man page with
name of the form foo.lang.1 shall go to /usr/share/man/lang/man1/foo.1, where lang
refers to a pair of lower-case ASCII letters optionally followed by an underscore and a pair of
upper-case ASCII letters. Failure behaviour is EAPI dependent as per section 11.3.3.1.

With option -i18n=lang, a man page shall be installed into an appropriate subdirectory of
/usr/share/man/lang (e. g. /usr/share/man/lang/man1/foo.pl.1 would be the desti-
nation for foo.pl.1). The lang subdirectory level is skipped if lang is the empty string. In
EAPIs specified by table 11.16, the -i18n option takes precedence over the language code in
the filename.

CHAPTER 11. THE EBUILD ENVIRONMENT 62

Table 11.13: EAPIs supporting dodoc -r

EAPI Supports dodoc -r?

0, 1, 2, 3 No
4, 5, 6 Yes

Table 11.14: EAPIs supporting doheader and newheader

EAPI Supports doheader and newheader?

0, 1, 2, 3, 4 No
5, 6 Yes

domo Installs the given .mo files with file mode 0644 into the appropriate subdirectory of
DESTTREE/share/locale, generated by taking the basename of the file, removing the .*
suffix, and appending /LC_MESSAGES. The name of the installed files is the package name
with .mo appended. Failure behaviour is EAPI dependent as per section 11.3.3.1.

dosbin As dobin, but installs to DESTTREE/sbin.

dosym Creates a symbolic link named as for its second parameter, pointing to the first. If the direc-
tory containing the new link does not exist, creates it. Failure behaviour is EAPI dependent as
per section 11.3.3.1.

fowners Acts as for chown, but takes paths relative to the image directory. Failure behaviour is
EAPI dependent as per section 11.3.3.1.

fperms Acts as for chmod, but takes paths relative to the image directory. Failure behaviour is EAPI
dependent as per section 11.3.3.1.

newbin NEWFOO-STDINAs for dobin, but takes two parameters. The first is the file to install; the second is the new
filename under which it will be installed. In EAPIs specified by table 11.17, standard input is
read when the first parameter is - (a hyphen). In this case, it is an error if standard input is a
terminal.

newconfd As for doconfd, but takes two parameters as for newbin.

newdoc As above, for dodoc.

newenvd As above, for doenvd.

newexe As above, for doexe.

newheader As above, for doheader.

newinitd As above, for doinitd.

newins As above, for doins.

newlib.a As above, for dolib.a.

newlib.so As above, for dolib.so.

newman As above, for doman.

newsbin As above, for dosbin.

keepdir Creates a directory as for dodir, and an empty file whose name starts with .keep in that
directory to ensure that the directory does not get removed by the package manager should it
be empty at any point. Failure behaviour is EAPI dependent as per section 11.3.3.1.

11.3.3.10 Commands affecting install destinations

The following commands are used to set the various destination trees, all relative to ${ED} in offset-
prefix aware EAPIs and relative to ${D} in offset-prefix agnostic EAPIs, used by the above installa-

CHAPTER 11. THE EBUILD ENVIRONMENT 63

Table 11.15: EAPIs supporting symlinks for doins

EAPI doins supports symlinks?

0, 1, 2, 3 No
4, 5, 6 Yes

Table 11.16: doman language support options for EAPIs

EAPI Language detection by filename? Option -i18n takes precedence?

0, 1 No Not applicable
2, 3 Yes No
4, 5, 6 Yes Yes

tion commands. They must be shell functions or aliases, due to the need to set variables read by the
above commands. Ebuilds must not run any of these commands once the current phase function has
returned.

into Sets the value of DESTTREE for future invocations of the above utilities. Creates the directory
under ${ED} in offset-prefix aware EAPIs or under ${D} in offset-prefix agnostic EAPIs, using
install -d with no additional options, if it does not already exist. Failure behaviour is EAPI
dependent as per section 11.3.3.1.

insinto Sets the value of INSDESTTREE for future invocations of the above utilities. May create the
directory, as specified for into.

exeinto Sets the install path for doexe and newexe. May create the directory, as specified for into.

docinto Sets the install subdirectory for dodoc et al. May create the directory, as specified for into.

insopts Sets the options passed by doins et al. to the install command.

diropts Sets the options passed by dodir et al. to the install command.

exeopts Sets the options passed by doexe et al. to the install command.

libopts Sets the options passed by dolib et al. to the install command.

11.3.3.11 Commands affecting install compression

DOCOMPRESSIn EAPIs listed in table 11.19 as supporting controllable compression, the package manager may
optionally compress a subset of the files under the ED directory in offset-prefix aware EAPIs or
the D directory in offset-prefix agnostic EAPIs. To control which directories may or may not be
compressed, the package manager shall maintain two lists:

• An inclusion list, which initially contains /usr/share/doc, /usr/share/info and
/usr/share/man.

• An exclusion list, which initially contains /usr/share/doc/${PF}/html.

The optional compression shall be carried out after src_install has completed, and before the
execution of any subsequent phase function. For each item in the inclusion list, pretend it has the
value of the ED variable in offset-prefix aware EAPIs or the D variable in offset-prefix agnostic EAPIs
prepended, then:

Table 11.17: EAPIs supporting stdin for new* commands

EAPI new* can read from stdin?

0, 1, 2, 3, 4 No
5, 6 Yes

CHAPTER 11. THE EBUILD ENVIRONMENT 64

Table 11.18: EAPIs supporting --host-root for *_version commands

EAPI *_version supports --host-root?

0, 1, 2, 3, 4 No
5, 6 Yes

Table 11.19: EAPIs supporting controllable compression

EAPI Supports controllable compression? Supports docompress?

0, 1, 2, 3 No No
4, 5, 6 Yes Yes

• If it is a directory, act as if every file or directory immediately under this directory were in the
inclusion list.

• If the item is a file, it may be compressed unless it has been excluded as described below.
• If the item does not exist, it is ignored.

Whether an item is to be excluded is determined as follows: For each item in the exclusion list,
pretend it has the value of the ED variable in offset-prefix aware EAPIs or the D variable in offset-
prefix agnostic EAPIs prepended, then:

• If it is a directory, act as if every file or directory immediately under this directory were in the
exclusion list.

• If the item is a file, it shall not be compressed.
• If the item does not exist, it is ignored.

The package manager shall take appropriate steps to ensure that its compression mechanisms behave
sensibly even if an item is listed in the inclusion list multiple times, if an item is a symlink, or if a
file is already compressed.

The following commands may be used in src_install to alter these lists. It is an error to call any
of these functions from any other phase.

docompress If the first argument is -x, add each of its subsequent arguments to the exclusion
list. Otherwise, add each argument to the inclusion list. Only available in EAPIs listed in
table 11.19 as supporting docompress.

11.3.3.12 Use List Functions

These functions provide behaviour based upon set or unset use flags. Ebuilds must not run any of
these commands once the current phase function has returned. It is an error if an ebuild calls any of
these functions in global scope.

Unless otherwise noted, if any of these functions is called with a flag value that is not included in
IUSE_EFFECTIVE, either behaviour is undefined or it is an error as decided by table 11.20.

use Returns shell true (0) if the first argument (a USE flag name) is enabled, false otherwise. If the
flag name is prefixed with !, returns true if the flag is disabled, and false if it is enabled. It is
guaranteed that this command is quiet.

usev The same as use, but also prints the flag name if the condition is met.

useq Deprecated synonym for use.

use_with USE-WITHHas one-, two-, and three-argument forms. The first argument is a USE flag name, the
second a configure option name (${opt}), defaulting to the same as the first argument if not
provided, and the third is a string value (${value}). For EAPIs listed in table 11.21 as not
supporting it, an empty third argument is treated as if it weren’t provided. If the USE flag is set,
outputs --with-${opt}=${value} if the third argument was provided, and --with-${opt}
otherwise. If the flag is not set, then it outputs --without-${opt}.

CHAPTER 11. THE EBUILD ENVIRONMENT 65

Table 11.20: EAPI Behaviour for Use Queries not in IUSE_EFFECTIVE

EAPI Behaviour

0, 1, 2, 3 Undefined
4, 5, 6 Error

Table 11.21: EAPIs supporting empty third argument in use_with and use_enable

EAPI Supports empty third argument?

0, 1, 2, 3 No
4, 5, 6 Yes

use_enable Works the same as use_with(), but outputs --enable- or --disable- instead of
--with- or --without-.

usex USEXAccepts at least one and at most five arguments. The first argument is a USE flag name,
any subsequent arguments (${arg2} to ${arg5}) are string values. If not provided,
${arg2} and ${arg3} default to yes and no, respectively; ${arg4} and ${arg5} de-
fault to the empty string. If the USE flag is set, outputs ${arg2}${arg4}. Otherwise, outputs
${arg3}${arg5}. The condition is inverted if the flag name is prefixed with !. Only available
in EAPIs listed in table 11.22 as supporting usex.

in_iuse IN-IUSEReturns shell true (0) if the first argument (a USE flag name) is included in IUSE_
EFFECTIVE, false otherwise. Only available in EAPIs listed in table 11.22 as supporting
in_iuse.

11.3.3.13 Text List Functions

These functions check whitespace-separated lists for a particular value.

has Returns shell true (0) if the first argument (a word) is found in the list of subsequent arguments,
false otherwise. Guaranteed quiet.

hasv The same as has, but also prints the first argument if found.

hasq Deprecated synonym for has.

11.3.3.14 Misc Commands

The following commands are always available in the ebuild environment, but don’t really fit in any of
the above categories. Ebuilds must not run any of these commands once the current phase function
has returned.

dosed Takes any number of arguments, which can be files or sed expressions. For each argument,
if it names, relative to ED (offset-prefix aware EAPIs) or D (offset-prefix agnostic EAPIs) a file
which exists, then sed is run with the current expression on that file. Otherwise, the current
expression is set to the text of the argument. The initial value of the expression is s:${ED}::g
in offset-prefix aware EAPIs and s:${D}::g in offset-prefix agnostic EAPIs. In EAPIs listed
in table 11.9, this command is banned as per section 11.3.3.2.

Table 11.22: EAPIs supporting usex and in_iuse

EAPI usex? in_iuse?

0, 1, 2, 3, 4 No No
5 Yes No
6 Yes Yes

CHAPTER 11. THE EBUILD ENVIRONMENT 66

unpack Unpacks one or more source archives, in order, into the current directory. After unpacking,
must ensure that all filesystem objects inside the current working directory (but not the current
working directory itself) have permissions a+r,u+w,go-w and that all directories under the
current working directory additionally have permissions a+x.

Arguments to unpack are interpreted as follows:

• A filename without path (i. e., not containing any slash) is looked up in DISTDIR.

• An argument starting with the string ./ is a path relative to the working directory.

• UNPACK-ABSOLUTEOtherwise, for EAPIs listed in table 11.23 as supporting absolute and relative paths, the
argument is interpreted as a literal path (absolute, or relative to the working directory);
for EAPIs listed as not supporting such paths, unpack shall abort the build process.

Any unrecognised file format shall be skipped silently. If unpacking a supported file format
fails, unpack shall abort the build process.

UNPACK-EXTENSIONSMust be able to unpack the following file formats, if the relevant binaries are available:

• tar files (*.tar). Ebuilds must ensure that GNU tar installed.

• gzip-compressed files (*.gz, *.Z). Ebuilds must ensure that GNU gzip is installed.

• gzip-compressed tar files (*.tar.gz, *.tgz, *.tar.Z). Ebuilds must ensure that
GNU gzip and GNU tar are installed.

• bzip2-compressed files (*.bz2, *.bz). Ebuilds must ensure that bzip2 is installed.

• bzip2-compressed tar files (*.tar.bz2, *.tbz2, *.tar.bz, *.tbz). Ebuilds must
ensure that bzip2 and GNU tar are installed.

• zip files (*.zip, *.ZIP, *.jar). Ebuilds must ensure that Info-ZIP Unzip is installed.

• 7zip files (*.7z, *.7Z). Ebuilds must ensure that P7ZIP is installed.

• rar files (*.rar, *.RAR). Ebuilds must ensure that RARLAB’s unrar is installed.

• LHA archives (*.LHA, *.LHa, *.lha, *.lzh). Ebuilds must ensure that the lha pro-
gram is installed.

• ar archives (*.a). Ebuilds must ensure that GNU binutils is installed.

• deb packages (*.deb). Ebuilds must ensure that the deb2targz program is installed on
those platforms where the GNU binutils ar program is not available and the installed ar
program is incompatible with GNU archives. Otherwise, ebuilds must ensure that GNU
binutils is installed.

• lzma-compressed files (*.lzma). Ebuilds must ensure that LZMA Utils is installed.

• lzma-compressed tar files (*.tar.lzma). Ebuilds must ensure that LZMA Utils and
GNU tar are installed.

• xz-compressed files (*.xz). Ebuilds must ensure that XZ Utils is installed. Only for
EAPIs listed in table 11.24 as supporting .xz.

• xz-compressed tar files (*.tar.xz, *.txz). Ebuilds must ensure that XZ Utils and
GNU tar are installed. Only for EAPIs listed in table 11.24 as supporting .tar.xz or
.txz.

It is up to the ebuild to ensure that the relevant external utilities are available, whether by being
in the system set or via dependencies.

UNPACK-IGNORE-CASEunpack matches filename extensions in a case-insensitive manner, for EAPIs listed such in
table 11.23.

inherit See section 10.1.

default DEFAULT-FUNCCalls the default_ function for the current phase (see section 9.1.17). Must not be called if
the default_ function does not exist for the current phase in the current EAPI. Only available
in EAPIs listed in table 11.25 as supporting default.

CHAPTER 11. THE EBUILD ENVIRONMENT 67

Table 11.23: unpack behaviour for EAPIs

EAPI Supports absolute and relative paths? Case-insensitive matching?

0, 1, 2, 3, 4, 5 No No
6 Yes Yes

Table 11.24: unpack extensions for EAPIs

EAPI .xz? .tar.xz? .txz?

0, 1, 2 No No No
3, 4, 5 Yes Yes No
6 Yes Yes Yes

einstalldocs EINSTALLDOCSTakes no arguments. Installs the files specified by the DOCS and HTML_DOCS variables
or a default set of files, according to Algorithm 11.4. If called using nonfatal and any of the
called commands returns a non-zero exit status, returns immediately with the same exit status.
Only available in EAPIs listed in table 11.25 as supporting einstalldocs.

get_libdir GET-LIBDIRPrints the libdir name obtained according to Algorithm 11.5. Only available in EAPIs
listed in table 11.25 as supporting get_libdir.

Algorithm 11.4 einstalldocs logic

1: save the value of the install directory for dodoc
2: set the install directory for dodoc to /usr/share/doc/${PF}
3: if the DOCS variable is a non-empty array then
4: call dodoc -r "${DOCS[@]}"
5: else if the DOCS variable is a non-empty scalar then
6: call dodoc -r ${DOCS}
7: else if the DOCS variable is unset then
8: for all d matching the filename expansion of README* ChangeLog AUTHORS NEWS TODO

CHANGES THANKS BUGS FAQ CREDITS CHANGELOG do
9: if file d exists and has a size greater than zero then

10: call dodoc with d as argument
11: end if
12: end for
13: end if
14: set the install directory for dodoc to /usr/share/doc/${PF}/html
15: if the HTML_DOCS variable is a non-empty array then
16: call dodoc -r "${HTML_DOCS[@]}"
17: else if the HTML_DOCS variable is a non-empty scalar then
18: call dodoc -r ${HTML_DOCS}
19: end if
20: restore the value of the install directory for dodoc
21: return shell true (0)

11.3.3.15 Debug Commands

The following commands are available for debugging. Normally all of these commands should
be no ops; a package manager may provide a special debug mode where these commands instead
do something. Ebuilds must not run any of these commands once the current phase function has
returned.

debug-print If in a special debug mode, the arguments should be outputted or recorded using some
kind of debug logging.

CHAPTER 11. THE EBUILD ENVIRONMENT 68

Algorithm 11.5 get_libdir logic

1: let libdir=lib
2: if the ABI environment variable is set then
3: let libvar=LIBDIR_$ABI
4: if the environment variable named by libvar is set then
5: let libdir=the value of the variable named by libvar
6: end if
7: end if
8: print the value of libdir

Table 11.25: Misc commands for EAPIs

EAPI default? einstalldocs? get_libdir?

0, 1 No No No
2, 3, 4, 5 Yes No No
6 Yes Yes Yes

debug-print-function Calls debug-print with $1: entering function as the first argument
and the remaining arguments as additional arguments.

debug-print-section Calls debug-print with now in section $*.

11.3.3.16 Reserved Commands and Variables

Except where documented otherwise, all functions and variables that contain any of the following
strings (ignoring case) are reserved for package manager use and may not be used or relied upon by
ebuilds:

• __ (two underscores) at beginning of string
• abort
• dyn
• ebuild
• hook
• paludis
• portage
• prep

11.4 The state of the system between functions

For the sake of this section:

• Variancy is any package manager action that modifies either ROOT or / in any way that isn’t
merely a simple addition of something that doesn’t alter other packages. This includes any
non-default call to any pkg phase function except pkg_setup, a merge of any package or an
unmerge of any package.

• As an exception, changes to DISTDIR do not count as variancy.
• The pkg_setup function may be assumed not to introduce variancy. Thus, ebuilds must not

perform variant actions in this phase.

The following exclusivity and invariancy requirements are mandated:

• No variancy shall be introduced at any point between a package’s pkg_setup being started up
to the point that that package is merged, except for any variancy introduced by that package.

• There must be no variancy between a package’s pkg_setup and a package’s pkg_postinst,
except for any variancy introduced by that package.

• Any non-default pkg phase function must be run exclusively.

CHAPTER 11. THE EBUILD ENVIRONMENT 69

• Each phase function must be called at most once during the build process for any given pack-
age.

Chapter 12

Merging and Unmerging

Note: In this chapter, file and regular file have their Unix meanings.

12.1 Overview

The merge process merges the contents of the D directory onto the filesystem under ROOT. This is not
a straight copy; there are various subtleties which must be addressed.

The unmerge process removes an installed package’s files. It is not covered in detail in this specifi-
cation.

12.2 Directories

Directories are merged recursively onto the filesystem. The method used to perform the merge is not
specified, so long as the end result is correct. In particular, merging a directory may alter or remove
the source directory under D.

Ebuilds must not attempt to merge a directory on top of any existing file that is not either a directory
or a symlink to a directory.

12.2.1 Permissions

The owner, group and mode (including set*id and sticky bits) of the directory must be preserved,
except as follows:

• Any directory owned by the user used to perform the build must become owned by the root
user.

• Any directory whose group is the primary group of the user used to perform the build must
have its group be that of the root user.

On SELinux systems, the SELinux context must also be preserved. Other directory attributes, in-
cluding modification time, may be discarded.

12.2.2 Empty Directories

Behaviour upon encountering an empty directory is undefined. Ebuilds must not attempt to install an
empty directory.

70

CHAPTER 12. MERGING AND UNMERGING 71

Table 12.1: Preservation of file modification times (mtimes)

EAPI mtimes preserved?

0, 1, 2 Undefined
3, 4, 5, 6 Yes

12.3 Regular Files

Regular files are merged onto the filesystem (but see the notes on configuration file protection, be-
low). The method used to perform the merge is not specified, so long as the end result is correct. In
particular, merging a regular file may alter or remove the source file under D.

Ebuilds must not attempt to merge a regular file on top of any existing file that is not either a regular
file or a symlink to a regular file.

12.3.1 Permissions

The owner, group and mode (including set*id and sticky bits) of the file must be preserved, except
as follows:

• Any file owned by the user used to perform the build must become owned by the root user.
• Any file whose group is the primary group of the user used to perform the build must have its

group be that of the root user.
• The package manager may reduce read and write permissions on executable files that have a

set*id bit set.

On SELinux systems, the SELinux context must also be preserved. Other file attributes may be
discarded.

12.3.2 File modification times

MTIME-PRESERVEIn EAPIs listed in table 12.1, the package manager must preserve modification times of regular files.
This includes files being compressed before merging. Exceptions to this are files newly created by
the package manager and binary object files being stripped of symbols.

When preserving, the seconds part of every regular file’s mtime must be preserved exactly. The sub-
second part must either be set to zero, or set to the greatest value supported by the operating system
and filesystem that is not greater than the sub-second part of the original time.

For any given destination filesystem, the package manager must ensure that for any two preserved
files a, b in that filesystem the relation mtime(a)≤mtime(b) still holds, if it held under the original
image directory.

In other EAPIs, the behaviour with respect to file modification times is undefined.

12.3.3 Configuration File Protection

The package manager must provide a means to prevent user configuration files from being overwrit-
ten by any package updates. The profile variables CONFIG_PROTECT and CONFIG_PROTECT_MASK
(section 5.3) control the paths for which this must be enforced.

In order to ensure interoperability with configuration update tools, the following scheme must be
used by all package managers when merging any regular file:

1. If the directory containing the file to be merged is not listed in CONFIG_PROTECT, and is not a
subdirectory of any such directory, and if the file is not listed in CONFIG_PROTECT, the file is
merged normally.

CHAPTER 12. MERGING AND UNMERGING 72

2. If the directory containing the file to be merged is listed in CONFIG_PROTECT_MASK, or is a
subdirectory of such a directory, or if the file is listed in CONFIG_PROTECT_MASK, the file is
merged normally.

3. If no existing file with the intended filename exists, or the existing file has identical content to
the one being merged, the file is installed normally.

4. Otherwise, prepend the filename with ._cfg0000_. If no file with the new name exists, then
the file is merged with this name.

5. Otherwise, increment the number portion (to form ._cfg0001_<name>) and repeat step 4.
Continue this process until a usable filename is found.

6. If 9999 is reached in this way, behaviour is undefined.

12.4 Symlinks

Symlinks are merged as symlinks onto the filesystem. The link destination for a merged link shall
be the same as the link destination for the link under D, except as noted below. The method used
to perform the merge is not specified, so long as the end result is correct; in particular, merging a
symlink may alter or remove the symlink under D.

Ebuilds must not attempt to merge a symlink on top of a directory.

12.4.1 Rewriting

Any absolute symlink whose link starts with D must be rewritten with the leading D removed. The
package manager should issue a notice when doing this.

12.5 Hard links

A hard link may be merged either as a single file with links or as multiple independent files.

12.6 Other Files

Ebuilds must not attempt to install any other type of file (FIFOs, device nodes etc).

Chapter 13

Metadata Cache

13.1 Directory Contents

The profiles/metadata/cache directory, if it exists, contains directories whose names are the
same as categories in the repository. Each subdirectory may optionally contain one file per package
version in that category, named <package>-<version>, in the format described below.

The metadata cache may be incomplete or non-existent, and may contain additional bogus entries.

13.2 Cache File Format

Each cache file contains the textual values of various metadata keys, one per line, in the following
order. Other lines may be present following these; their meanings are not defined here.

1. Build-time dependencies (DEPEND)
2. Run-time dependencies (RDEPEND)
3. Slot (SLOT)
4. Source tarball URIs (SRC_URI)
5. RESTRICT
6. Package homepage (HOMEPAGE)
7. Package license (LICENSE)
8. Package description (DESCRIPTION)
9. Package keywords (KEYWORDS)

10. Inherited eclasses (INHERITED)
11. Use flags that this package respects (IUSE)
12. Use flags that this package requires (REQUIRED_USE). Blank in some EAPIs; see table 7.2.
13. Post dependencies (PDEPEND)
14. Unused; previously used for old-style virtual PROVIDE.
15. The ebuild API version to which this package conforms (EAPI)
16. Properties (PROPERTIES). In some EAPIs, may optionally be blank, regardless of ebuild meta-

data; see table 7.2.
17. Defined phases (DEFINED_PHASES). In some EAPIs, may optionally be blank, regardless of

ebuild metadata; see table 7.4.
18. Blank lines to pad the file to 22 lines long

Future EAPIs may define new variables, remove existing variables, change the line number or format
used for a particular variable, add or reduce the total length of the file and so on. Any future EAPI
that uses this cache format will continue to place the EAPI value on line 15 if such a concept makes
sense for that EAPI, and will place a value that is clearly not a supported EAPI on line 15 if it does
not.

73

Chapter 14

Glossary

This section contains explanations of some of the terms used in this document whose meaning may
not be immediately obvious.

qualified package name A package name along with its associated category. For example,
app-editors/vim is a qualified package name.

new-style virtual A new-style virtual is a normal package in the virtual category which installs
no files and uses its dependency requirements to pull in a ‘provider’. Historically, old-style
virtuals required special handling from the package manager; new-style virtuals do not.

stand-alone repository An (ebuild) repository which is intended to function on its own as the only,
or primary, repository on a system. Contrast with slave repository below.

slave repository, non-stand-alone repository An (ebuild) repository which is not complete enough
to function on its own, but needs one or more master repositories to satisfy dependencies and
provide repository-level support files. Known in Portage as an overlay.

master repository See above.

74

Bibliography

[1] Marius Mauch. GLEP 44: Manifest2 format. https://wiki.gentoo.org/wiki/GLEP:44,
December 2005.

[2] Jason Stubbs. GLEP 37: Virtuals deprecation. https://wiki.gentoo.org/wiki/GLEP:37,
April 2005.

75

https://wiki.gentoo.org/wiki/GLEP:44
https://wiki.gentoo.org/wiki/GLEP:37

Appendix A

metadata.xml

The metadata.xml file is used to contain extra package- or category-level information beyond what
is stored in ebuild metadata. Its exact format is strictly beyond the scope of this document, and is
described in the DTD file located at https://www.gentoo.org/dtd/metadata.dtd.

76

https://www.gentoo.org/dtd/metadata.dtd

Appendix B

Unspecified Items

The following items are not specified by this document, and must not be relied upon by ebuilds. This
is, of course, an incomplete list—it covers only the things that the authors know have been abused in
the past.

• The FEATURES variable. This is Portage specific.
• Similarly, any EMERGE_ variable and any PORTAGE_ variable not explicitly listed.
• Any Portage configuration file.
• The VDB (/var/db/pkg). Ebuilds must not access this or rely upon it existing or being in

any particular format.
• The portageq command. The has_version and best_version commands are available as

functions.
• The emerge command.
• Binary packages.
• The PORTDIR_OVERLAY variable, and overlay behaviour in general.

77

Appendix C

Historical Curiosities

The items described in this chapter are included for information only. They were deprecated or
abandoned long before EAPI was introduced. Ebuilds must not use these features, and package
managers should not be changed to support them.

C.1 If-else use blocks

Historically, Portage supported if-else use conditionals, as shown by listing C.1. The block before
the colon would be taken if the condition was met, and the block after the colon would be taken if
the condition was not met.

This feature was deprecated and removed from the tree long before the introduction of EAPI.

C.2 cvs Versions

Portage has very crude support for CVS packages. The package foo could contain a file named
foo-cvs.1.2.3.ebuild. This version would order higher than any non-CVS version (including
foo-2.ebuild). This feature has not seen real world use and breaks versioned dependencies, so it
must not be used.

C.3 use.defaults

The use.defaults file in the profile directory was used to implement ‘autouse’—switching USE
flags on or off depending upon which packages are installed. It was deprecated long ago and finally
removed in 2009.

Listing C.1 If-else use blocks
DEPEND="

flag? (
taken/if-true

) : (
taken/if-false

)
"

78

APPENDIX C. HISTORICAL CURIOSITIES 79

C.4 Old-style Virtuals

Historically, virtuals were special packages rather than regular ebuilds. An ebuild could specify in
the PROVIDE metadata that it supplied certain virtuals, and the package manager had to bear this in
mind when handling dependencies.

Old-style virtuals were supported by EAPIs 0, 1, 2, 3 and 4, and were phased out via GLEP 37 [2].

Appendix D

Feature Availability by EAPI

Note: This chapter is informative and for convenience only. Refer to the main text for specifics.
For lack of space, EAPIs 0, 1, and 2 have been consolidated into a single column in the table below;
entries marked with an asterisk differ between these EAPIs. See the 2012-09-20 edition of this
document for a complete table of previous EAPIs.

80

A
PPE

N
D

IX
D

.
FE

A
T

U
R

E
AVA

IL
A

B
IL

IT
Y

B
Y

E
A

PI
81

Table D.1: Features in EAPIs

Feature Reference EAPIs
0, 1, 2 3 4 5 6

Stable use masking/forcing stablemask p22 No No No Yes Yes
Bash version bash-version p26 3.2 3.2 3.2 3.2 4.2
IUSE defaults iuse-defaults p28 * Yes Yes Yes Yes
REQUIRED_USE required-use p28 No No Yes Yes Yes
PROPERTIES properties p28 Optionally Optionally Yes Yes Yes
RDEPEND=DEPEND rdepend-depend p29 Yes Yes No No No
DEFINED_PHASES defined-phases p30 Optionally Optionally Yes Yes Yes
?? () groups at-most-one-of p32 No No No Yes Yes
SRC_URI arrows src-uri-arrows p36 * Yes Yes Yes Yes
Slot dependencies slot-deps p34 * Named Named Named and

Operator
Named and
Operator

Sub-slots sub-slot p35 No No No Yes Yes
Use dependencies use-deps p33 * 2-style 4-style 4-style 4-style
! blockers bang-strength p34 * Weak Weak Weak Weak
!! blockers bang-strength p34 * Strong Strong Strong Strong
S to WORKDIR fallback s-workdir-fallback p37 Always Always Conditional Conditional Conditional
pkg_pretend pkg-pretend p37 No No Yes Yes Yes
src_prepare src-prepare p38 * Yes Yes Yes Yes
src_prepare style src-prepare p38 * no-op no-op no-op 6
src_configure src-configure p39 * Yes Yes Yes Yes
src_compile style src-compile p39 * 2 2 2 2
Parallel tests parallel-tests p40 No No No Yes Yes
src_install style src-install p41 no-op no-op 4 4 6
pkg_info pkg-info p42 Installed Installed Both Both Both

A
PPE

N
D

IX
D

.
FE

A
T

U
R

E
AVA

IL
A

B
IL

IT
Y

B
Y

E
A

PI
82

Feature Reference EAPIs
0, 1, 2 3 4 5 6

default_ phase functions default-phase-funcs p43 * pkg_nofetch,
src_unpack,
src_prepare,
src_configure,
src_compile,
src_test

pkg_nofetch,
src_unpack,
src_prepare,
src_configure,
src_compile,
src_install,
src_test

pkg_nofetch,
src_unpack,
src_prepare,
src_configure,
src_compile,
src_install,
src_test

pkg_nofetch,
src_unpack,
src_prepare,
src_configure,
src_compile,
src_install,
src_test

AA aa p48 Yes Yes No No No
KV kv p50 Yes Yes No No No
EBUILD_PHASE_FUNC ebuild-phase-func p50 No No No Yes Yes
MERGE_TYPE merge-type p50 No No Yes Yes Yes
Sane locale settings locale-settings p51 Undefined Undefined Undefined Undefined Yes
Profile IUSE injection profile-iuse-inject p52 No No No Yes Yes
REPLACING_VERSIONS replace-version-vars p52 No No Yes Yes Yes
REPLACED_BY_VERSION replace-version-vars p52 No No Yes Yes Yes
EPREFIX, ED, EROOT offset-prefix-vars p52 No Yes Yes Yes Yes
failglob in global scope failglob p54 No No No No Yes
find is GNU? gnu-find p54 Undefined Undefined Undefined Yes Yes
Most utilities die die-on-failure p55 No No Yes Yes Yes
nonfatal nonfatal p55 No No Yes Yes Yes
dohard banned-commands p55 Yes Yes Banned Banned Banned
dosed banned-commands p55 Yes Yes Banned Banned Banned
einstall banned-commands p55 Yes Yes Yes Yes Banned
Option --host-root host-root-option p56 No No No Yes Yes
die -n nonfatal-die p56 No No No No Yes
eapply eapply p57 No No No No Yes
eapply_user eapply-user p57 No No No No Yes

A
PPE

N
D

IX
D

.
FE

A
T

U
R

E
AVA

IL
A

B
IL

IT
Y

B
Y

E
A

PI
83

Feature Reference EAPIs
0, 1, 2 3 4 5 6

econf arguments econf-options p58 disable
dependency
tracking

disable
dependency
tracking, disable
silent rules

disable
dependency
tracking, disable
silent rules,
docdir, htmldir

dodoc -r dodoc p60 No No Yes Yes Yes
doheader doheader p60 No No No Yes Yes
doins handles symlinks doins p61 No No Yes Yes Yes
doman languages doman-langs p61 * Yes Yes Yes Yes
doman -i18n precedence doman-langs p61 * No Yes Yes Yes
new* support stdin newfoo-stdin p62 No No No Yes Yes
Controllable compression docompress p63 No No Yes Yes Yes
docompress docompress p63 No No Yes Yes Yes
use_with empty third arg use-with p64 No No Yes Yes Yes
usex usex p65 No No No Yes Yes
in_iuse in-iuse p65 No No No No Yes
unpack absolute paths unpack-absolute p66 No No No No Yes
unpack support for xz unpack-extensions p66 No Yes Yes Yes Yes
unpack support for txz unpack-extensions p66 No No No No Yes
unpack case-insensitive unpack-ignore-case p66 No No No No Yes
default function default-func p66 * Yes Yes Yes Yes
einstalldocs einstalldocs p67 No No No No Yes
get_libdir get-libdir p67 No No No No Yes
File mtimes preserved mtime-preserve p71 Undefined Yes Yes Yes Yes

Appendix E

Differences Between EAPIs

Note: This chapter is informative and for convenience only. Refer to the main text for specifics.

EAPI 0

EAPI 0 is the base EAPI.

EAPI 1

EAPI 1 is EAPI 0 with the following changes:

• IUSE defaults, IUSE-DEFAULTS on page 28.
• Slot dependencies, SLOT-DEPS on page 34.
• Different src_compile implementation, SRC-COMPILE-1 on page 40.

EAPI 2

EAPI 2 is EAPI 1 with the following changes:

• Use dependencies, USE-DEPS on page 33.
• ! and !! blockers, BANG-STRENGTH on page 34.
• SRC_URI arrows, SRC-URI-ARROWS on page 36.
• src_prepare, SRC-PREPARE on page 38.
• src_configure, SRC-CONFIGURE on page 39.
• Different src_compile implementation, SRC-COMPILE-2 on page 40.
• default_ phase functions for phases pkg_nofetch, src_unpack, src_prepare, src_
configure, src_compile and src_test; DEFAULT-PHASE-FUNCS on page 43.

• doman language detection by filename, DOMAN-LANGS on page 61.
• default function, DEFAULT-FUNC on page 66.

EAPI 3

EAPI 3 is EAPI 2 with the following changes:

• Offset-prefix support by definition of EPREFIX, ED and EROOT, OFFSET-PREFIX-VARS on
page 52.

• unpack supports .xz and .tar.xz, UNPACK-EXTENSIONS on page 66.
• File modification times are preserved, MTIME-PRESERVE on page 71.

84

APPENDIX E. DIFFERENCES BETWEEN EAPIS 85

EAPI 4

EAPI 4 is EAPI 3 with the following changes:

• PROPERTIES support is mandatory, PROPERTIES on page 28.
• REQUIRED_USE, REQUIRED-USE on page 28.
• RDEPEND=DEPEND no longer done, RDEPEND-DEPEND on page 29.
• DEFINED_PHASES support is mandatory, DEFINED-PHASES on page 30.
• Use dependency defaults, USE-DEP-DEFAULTS on page 35.
• S to WORKDIR fallback restricted, S-WORKDIR-FALLBACK on page 37.
• pkg_pretend, PKG-PRETEND on page 37.
• Default src_install no longer a no-op, SRC-INSTALL-4 on page 41.
• pkg_info can run on non-installed packages, PKG-INFO on page 42.
• AA is gone, AA on page 48.
• KV is gone, KV on page 50.
• MERGE_TYPE, MERGE-TYPE on page 50.
• REPLACING_VERSIONS and REPLACED_BY_VERSION, REPLACE-VERSION-VARS on page 52.
• Utilities now die on failure, DIE-ON-FAILURE on page 55, unless called under nonfatal,

NONFATAL on page 55
• dohard, dosed banned, BANNED-COMMANDS on page 55.
• econf adds --disable-dependency-tracking, ECONF-OPTIONS on page 58.
• dodoc -r support, DODOC on page 60.
• doins supports symlinks, DOINS on page 61.
• doman -i18n option takes precedence, DOMAN-LANGS on page 61.
• Controllable compression and docompress, DOCOMPRESS on page 63.
• use_with and use_enable support empty third argument, USE-WITH on page 64.

EAPI 5

EAPI 5 is EAPI 4 with the following changes:

• Stable use masking and forcing, STABLEMASK on page 22.
• REQUIRED_USE now supports ?? groups, AT-MOST-ONE-OF on page 32.
• Slot operator dependencies, SLOT-OPERATOR-DEPS on page 35.
• SLOT now supports an optional sub-slot part, SUB-SLOT on page 35.
• src_test supports parallel tests, PARALLEL-TESTS on page 40.
• EBUILD_PHASE_FUNC, EBUILD-PHASE-FUNC on page 50.
• USE is calculated differently, PROFILE-IUSE-INJECT on page 52.
• find is guaranteed to be GNU, GNU-FIND on page 54.
• best_version and has_version support the --host-root option, HOST-ROOT-OPTION on

page 56.
• econf adds --disable-silent-rules, ECONF-OPTIONS on page 58.
• doheader and newheader support, DOHEADER on page 60.
• new* can read from standard input, NEWFOO-STDIN on page 62.
• usex support, USEX on page 65.

EAPI 6

EAPI 6 is EAPI 5 with the following changes:

• Bash version is 4.2, BASH-VERSION on page 26.
• Default src_prepare no longer a no-op, SRC-PREPARE-6 on page 39.
• Different src_install implementation, SRC-INSTALL-6 on page 41.
• LC_CTYPE and LC_COLLATE compatible with POSIX locale, LOCALE-SETTINGS on page 51.
• failglob is enabled in global scope, FAILGLOB on page 54.
• einstall banned, BANNED-COMMANDS on page 55.

APPENDIX E. DIFFERENCES BETWEEN EAPIS 86

• die and assert called with -n respect nonfatal, NONFATAL-DIE on page 56.
• eapply support, EAPPLY on page 57.
• eapply_user support, EAPPLY-USER on page 57.
• econf adds --docdir and --htmldir, ECONF-OPTIONS on page 58.
• in_iuse support, IN-IUSE on page 65.
• unpack supports absolute and relative paths, UNPACK-ABSOLUTE on page 66.
• unpack supports .txz, UNPACK-EXTENSIONS on page 66.
• unpack matches filename extensions case-insensitively, UNPACK-IGNORE-CASE on page 66.
• einstalldocs support, EINSTALLDOCS on page 67.
• get_libdir support, GET-LIBDIR on page 67.

d
o
h
e
a
d
e
r

an
d
n
e
w
h
e
a
d
e
r

Th
es

e
ne

w
he

lp
er

fu
nc

tio
ns

in
st

al
l

th
e

gi
ve

n
he

ad
er

fil
e(

s)
in

to
/
u
s
r
/
i
n
c
l
u
d
e

.
Th

e
-
r

op
tio

n
en

ab
le

s
re

cu
rs

io
n

fo
r
d
o
h
e
a
d
e
r

,
si

m
-

ila
rt

o
d
o
i
n
s

.
S

ee
D

O
H

E
A

D
E

R
on

pa
ge

60
.

n
e
w
*

st
an

da
rd

in
pu

t
Th

e
n
e
w
i
n
s

et
c.

co
m

m
an

ds
re

ad
fro

m
st

an
da

rd
in

pu
ti

ft
he

fir
st

ar
gu

m
en

ti
s
-

(a
hy

ph
en

).
S

ee
N

E
W

F
O

O
-S

T
D

IN
on

pa
ge

62
.

E
B
U
I
L
D
_
P
H
A
S
E
_
F
U
N
C

Th
is

va
ria

bl
e

is
ve

ry
si

m
ila

r
to

E
B
U
I
L
D
_
P
H
A
S
E

,b
ut

co
nt

ai
ns

th
e

na
m

e
of

th
e

cu
rr

en
t

eb
ui

ld
fu

nc
tio

n.
S

ee
E

B
U

IL
D

-P
H

A
S

E
-F

U
N

C
on

pa
ge

50
.

S
ta

bl
e

us
e

m
as

ki
ng

/fo
rc

in
g

N
ew

fil
es

u
s
e
.
s
t
a
b
l
e
.

{
m
a
s
k
,
f
o
r
c
e
}

an
d

p
a
c
k
a
g
e
.
u
s
e
.
s
t
a
b
l
e
.

{
m
a
s
k
,
f
o
r
c
e
}

ar
e

su
pp

or
te

d
in

pr
ofi

le
di

re
ct

or
ie

s.
Th

ey
ar

e
si

m
ila

rt
o

th
ei

rn
on

-s
t
a
b
l
e

co
un

te
rp

ar
ts

,b
ut

ac
t

on
ly

on
pa

ck
ag

es
th

at
w

ou
ld

be
m

er
ge

d
du

e
to

a
st

ab
le

ke
yw

or
d.

S
ee

S
TA

B
LE

M
A

S
K

on
pa

ge
22

.

E
A

P
I6

(2
01

5-
11

-1
3)

A
dd

iti
on

s/
C

ha
ng

es

B
as

h
ve

rs
io

n
E

bu
ild

s
ca

n
us

e
fe

at
ur

es
of

B
as

h
ve

rs
io

n
4.

2
(w

as
3.

2
be

fo
re

).
S

ee
B

A
S

H
-V

E
R

S
IO

N
on

pa
ge

26
.

f
a
i
l
g
l
o
b

Th
e
f
a
i
l
g
l
o
b

op
tio

n
of

B
as

h
is

se
ti

n
gl

ob
al

sc
op

e,
so

th
at

un
in

te
nt

io
na

l
pa

tte
rn

ex
pa

ns
io

n
w

ill
be

ca
ug

ht
as

an
er

ro
r.

S
ee

FA
IL

G
LO

B
on

pa
ge

54
.

Lo
ca

le
se

tt
in

gs
It

is
en

su
re

d
th

at
th

e
be

ha
vi

ou
r

of
ca

se
m

od
ifi

ca
tio

n
an

d
co

lla
tio

n
or

de
r

fo
r

A
S

C
II

ch
ar

ac
te

rs
(L
C
_
C
T
Y
P
E

an
d
L
C
_
C
O
L
L
A
T
E

)a
re

th
e

sa
m

e
as

in
th

e
P

O
S

IX
lo

ca
le

.
S

ee
LO

C
A

LE
-S

E
T

T
IN

G
S

on
pa

ge
51

.

s
r
c
_
p
r
e
p
a
r
e

Th
is

ph
as

e
fu

nc
tio

n
ha

s
a

de
fa

ul
t

no
w

,
w

hi
ch

ap
pl

ie
s

pa
tc

he
s

fro
m

th
e
P
A
T
C
H
E
S

va
ria

bl
e

w
ith

th
e

ne
w
e
a
p
p
l
y

co
m

m
an

d,
an

d
us

er
-p

ro
vi

de
d

pa
tc

he
s

w
ith
e
a
p
p
l
y
_
u
s
e
r

.S
ee

S
R

C
-P

R
E

PA
R

E
-6

on
pa

ge
39

.

s
r
c
_
i
n
s
t
a
l
l

Th
e

de
fa

ul
ti

m
pl

em
en

ta
tio

n
us

es
th

e
ne

w
e
i
n
s
t
a
l
l
d
o
c
s

fu
nc

tio
n

fo
r

in
st

al
lin

g
do

cu
m

en
ta

tio
n.

S
ee

S
R

C
-I

N
S

TA
LL

-6
on

pa
ge

41
.

n
o
n
f
a
t
a
l
d
i
e

W
he

n
d
i
e

or
a
s
s
e
r
t

ar
e

ca
lle

d
un

de
r

th
e
n
o
n
f
a
t
a
l

co
m

m
an

d
an

d
w

ith
th

e
-
n

op
tio

n,
th

ey
w

ill
no

ta
bo

rt
th

e
bu

ild
pr

oc
es

s
bu

tr
et

ur
n

w
ith

an
er

ro
r.

S
ee

N
O

N
FA

TA
L-

D
IE

on
pa

ge
56

.

..

u
n
p
a
c
k

ch
an

ge
s
u
n
p
a
c
k

ha
s

be
en

ex
te

nd
ed

:

P
at

hn
am

es
B

ot
h

ab
so

lu
te

pa
th

s
an

d
pa

th
s

re
la

tiv
e

to
th

e
w

or
ki

ng
di

re
ct

or
y

ar
e

ac
ce

pt
ed

as
ar

gu
m

en
ts

.
S

ee
U

N
PA

C
K

-A
B

S
O

LU
T

E
on

pa
ge

66
.

.
t
x
z

fil
es

S
uf

fix
.
t
x
z

fo
r

xz
co

m
pr

es
se

d
ta

rb
al

ls
is

re
co

gn
is

ed
.

S
ee

U
N

PA
C

K
-E

X
T

E
N

S
IO

N
S

on
pa

ge
66

.

Fi
le

na
m

e
ca

se
C

ha
ra

ct
er

ca
se

of
fil

en
am

e
ex

te
ns

io
ns

is
ig

no
re

d.
S

ee
U

N
PA

C
K

-I
G

N
O

R
E

-C
A

S
E

on
pa

ge
66

.

e
c
o
n
f

ch
an

ge
s

O
pt

io
ns

-
-
d
o
c
d
i
r

an
d
-
-
h
t
m
l
d
i
r

ar
e

pa
ss

ed
to
c
o
n
f
i
g
u
r
e

,
in

ad
di

tio
n

to
th

e
ex

is
tin

g
op

tio
ns

.
S

ee
E

C
O

N
F
-O

P
T

IO
N

S
on

pa
ge

58
.

e
a
p
p
l
y

Th
e
e
a
p
p
l
y

co
m

m
an

d
is

a
si

m
pl

ifi
ed

su
bs

tit
ut

e
fo

re
p
a
t
c
h

,i
m

pl
em

en
te

d
in

th
e

pa
ck

ag
e

m
an

ag
er

.T
he

pa
tc

he
s

fro
m

its
fil

e
or

di
re

ct
or

y
ar

gu
m

en
ts

ar
e

ap
pl

ie
d

us
in

g
p
a
t
c
h
-
p
1

.
S

ee
E

A
P

P
LY

on
pa

ge
57

.

e
a
p
p
l
y
_
u
s
e
r

Th
e
e
a
p
p
l
y
_
u
s
e
r

co
m

m
an

d
pe

rm
its

th
e

pa
ck

ag
e

m
an

ag
er

to
ap

pl
y

us
er

-p
ro

vi
de

d
pa

tc
he

s.
It

m
us

t
be

ca
lle

d
fro

m
ev

er
y
s
r
c
_
p
r
e
p
a
r
e

fu
nc

tio
n.

S
ee

E
A

P
P

LY
-U

S
E

R
on

pa
ge

57
.

e
i
n
s
t
a
l
l
d
o
c
s

Th
e
e
i
n
s
t
a
l
l
d
o
c
s

fu
nc

tio
n

w
ill

in
-

st
al

lt
he

fil
es

sp
ec

ifi
ed

by
th

e
D
O
C
S

va
ria

bl
e

(o
ra

de
fa

ul
t

se
t

of
fil

es
if
D
O
C
S

is
un

se
t)

an
d

by
th

e
H
T
M
L
_
D
O
C
S

va
ria

bl
e.

S
ee

E
IN

S
TA

LL
D

O
C

S
on

pa
ge

67
.

i
n
_
i
u
s
e

Th
e
i
n
_
i
u
s
e

fu
nc

tio
n

re
tu

rn
s

tr
ue

if
th

e
U

S
E

fla
g

gi
ve

n
as

its
ar

gu
m

en
t

is
av

ai
la

bl
e

in
th

e
eb

ui
ld

fo
r

U
S

E
qu

er
ie

s.
S

ee
IN

-I
U

S
E

on
pa

ge
65

.

g
e
t
_
l
i
b
d
i
r

Th
e
g
e
t
_
l
i
b
d
i
r

co
m

m
an

d
ou

tp
ut

s
th

e
l
i
b
*

di
re

ct
or

y
ba

se
na

m
e

su
ita

bl
e

fo
r

th
e

cu
rr

en
t

A
B

I.
S

ee
G

E
T-

LI
B

D
IR

on
pa

ge
67

.

R
em

ov
al

s/
B

an
s

e
i
n
s
t
a
l
l

N
o

lo
ng

er
al

lo
w

ed
.

U
se

e
m
a
k
e
i
n
s
t
a
l
l

as
re

pl
ac

em
en

t.
S

ee
B

A
N

N
E

D
-C

O
M

M
A

N
D

S
on

pa
ge

55
.

..

E
A

P
IC

he
at

S
he

et

C
hr

is
tia

n
Fa

ul
ha

m
m

er
fa

ul
i@

ge
nt

oo
.o

rg
U

lri
ch

M
ül

le
r

ul
m

@
ge

nt
oo

.o
rg

Ve
rs

io
n

6.
0

13
th

N
ov

em
be

r2
01

5

A
bs

tr
ac

t

A
n

ov
er

vi
ew

of
th

e
m

ai
n

E
A

P
Ic

ha
ng

es
in

G
en

to
o,

fo
r

eb
ui

ld
au

th
or

s.
Fo

r
fu

ll
de

ta
ils

,c
on

su
lt

th
e

P
ac

ka
ge

M
an

-
ag

er
S

pe
ci

fic
at

io
n

fo
un

d
on

th
e

pr
oj

ec
t

pa
ge

;1
th

is
is

an
in

co
m

pl
et

e
su

m
m

ar
y

on
ly

.
O

ffi
ci

al
G

en
to

o
E

A
P

Is
ar

e
co

ns
ec

ut
iv

el
y

nu
m

be
re

d
in

-
te

ge
rs

(0
,

1,
2,

..
.)

.
E

xc
ep

t
w

he
re

ot
he

rw
is

e
no

te
d,

an
E

A
P

Ii
s

th
e

sa
m

e
as

th
e

pr
ev

io
us

E
A

P
I.

A
ll

la
be

ls
re

fe
r

to
th

e
P

M
S

do
cu

m
en

ti
ts

el
f,

bu
ilt

fro
m

th
e

sa
m

e
ch

ec
ko

ut
as

th
is

ov
er

vi
ew

.
Th

is
w

or
k

is
re

le
as

ed
un

de
r

th
e

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

S
ha

re
A

lik
e

3.
0

Li
ce

nc
e.

2

E
A

P
Is

0,
1,

an
d

2

O
m

itt
ed

fo
rl

ac
k

of
sp

ac
e.

S
ee

ve
rs

io
n

5.
0

of
th

is
do

cu
m

en
t

fo
rd

iff
er

en
ce

s
be

tw
ee

n
th

es
e

pr
ev

io
us

E
A

P
Is

.

E
A

P
I3

(2
01

0-
01

-1
8)

A
dd

iti
on

s/
C

ha
ng

es

S
up

po
rt

fo
r
.
x
z

U
np

ac
k

of
.
x
z

an
d
.
t
a
r
.
x
z

fil
es

is
po

ss
ib

le
w

ith
ou

t
an

y
cu

st
om

s
r
c
_
u
n
p
a
c
k

fu
nc

tio
ns

.
S

ee
U

N
PA

C
K

-E
X

T
E

N
S

IO
N

S
on

pa
ge

66
.

O
ff

se
tp

re
fix

S
up

po
rt

in
g

in
st

al
la

tio
n

on
P

re
fix

-e
na

bl
ed

sy
st

em
s

w
ill

be
ea

si
er

w
ith

th
is

E
A

P
I.

1
ht

tp
s:

//w
ik

i.g
en

to
o.

or
g/

w
ik

i/P
ro

je
ct

:P
ac

ka
ge

_M
an

ag
er

_S
pe

ci
fic

at
io

n
2
ht

tp
://

cr
ea

tiv
ec

om
m

on
s.

or
g/

lic
en

se
s/

by
-s

a/
3.

0/

E
A

P
I4

(2011-01-17)

A
dditions/C

hanges

p
k
g
_
p
r
e
t
e
n
d

S
om

e
useful

checks
(kernel

options
for

exam
ple)

can
be

placed
in

this
new

phase
to

inform
the

user
early

(w
hen

just
pretending

to
em

erge
the

package).
M

ost
checks

should
usually

be
repeated

in
p
k
g
_
s
e
t
u
p

.
S

ee
P

K
G

-P
R

E
T

E
N

D
on

page
37.

s
r
c
_
i
n
s
t
a
l
l

The
s
r
c
_
i
n
s
t
a
l
l

phase
is

no
longer

em
pty

buthas
a

defaultnow
.

This
com

es
along

w
ith

an
accom

panying
d
e
f
a
u
l
t

function.
S

ee
S

R
C

-IN
S

TA
LL-4

on
page

41.

p
k
g
_
i
n
f
o

on
non-installed

packages
The

p
k
g
_
i
n
f
o

phase
can

be
called

even
for

non-installed
packages.

B
e

w
arned

that
dependencies

m
ight

not
have

been
in-

stalled
atexecution

tim
e.

S
ee

P
K

G
-IN

F
O

on
page

42.

e
c
o
n
f

changes
The

helper
function

now
alw

ays
acti-

vates
-
-
d
i
s
a
b
l
e
-
d
e
p
e
n
d
e
n
c
y
-
t
r
a
c
k
i
n
g

.
S

ee
E

C
O

N
F-O

P
T

IO
N

S
on

page
58.

U
S

E
dependency

defaults
In

addition
to

the
features

of-
fered

in
E

A
P

I
2

for
U

S
E

dependencies,
a
(
+
)

or
(
-
)

can
be

added
after

a
U

S
E

flag
(m

ind
the

parentheses).
The

form
er

specifies
that

flags
not

in
IU

S
E

should
be

treated
as

enabled;the
latter,disabled.

C
annotbe

used
w

ith
U

S
E

_E
X

PA
N

D
flags.

This
m

im
ics

parts
ofthe

be-
haviour

of
-
-
m
i
s
s
i
n
g

in
b
u
i
l
t
_
w
i
t
h
_
u
s
e

.
S

ee
U

S
E-D

E
P-D

E
FA

U
LT

S
on

page
35.

C
ontrollable

com
pression

A
ll

item
s

in
the

d
o
c

,
i
n
f
o

,
m
a
n

subdirectories
of
/
u
s
r
/
s
h
a
r
e
/

m
ay

be
com

-
pressed

on-disk
after

s
r
c
_
i
n
s
t
a
l
l

,
except

for
/
u
s
r
/
s
h
a
r
e
/
d
o
c
/
$
{
P
F
}
/
h
t
m
l

.
d
o
c
o
m
p
r
e
s
s

p
a
t
h
.
.
.

adds
paths

to
the

inclusion
list

for
com

-
pression.

d
o
c
o
m
p
r
e
s
s
-
x
p
a
t
h
.
.
.

adds
paths

to
the

exclusion
list.

S
ee

D
O

C
O

M
P

R
E

S
S

on
page

63.

n
o
n
f
a
t
a
l

for
com

m
ands

If
you

call
n
o
n
f
a
t
a
l

the
com

m
and

given
as

argum
entw

illnotabortthe
build

pro-
cess

in
case

ofa
failure

(as
is

the
default)butw

illreturn
non-zero

on
failure.

S
ee

N
O

N
FATA

L
on

page
55.

d
o
d
o
c

recursion
If

the
-
r

sw
itch

is
given

as
first

argu-
m

entand
follow

ed
by

directories,files
from

there
are

in-
stalled

recursively.
S

ee
D

O
D

O
C

on
page

60.

. .

d
o
i
n
s

sym
link

support
S

ym
bolic

links
are

now
properly

installed
w

hen
using

recursion
(-
r

sw
itch).

S
ee

D
O

IN
S

on
page

61.

P
R
O
P
E
R
T
I
E
S

Is
m

andatory
forallpackage

m
anagers

now
to

supportinteractive
installs.

R
E
Q
U
I
R
E
D
_
U
S
E

This
variable

can
be

used
sim

ilar
to

the
(
R
|
P
)
D
E
P
E
N
D

variables
and

define
sets

of
U

S
E

flag
com

binations
thatare

notallow
ed.

A
llelem

ents
can

be
furthernested

to
achieve

m
ore

functionality.

Illegalcom
bination

To
prevent

activation
of
f
l
a
g
1

if
f
l
a
g
2

is
enabled

use
"f
l
a
g
2
?
(
!
f
l
a
g
1
)

".

O
R

If
at

least
one

U
S

E
flag

out
of

m
any

m
ust

be
acti-

vated
on

f
l
a
g
1

use
"f
l
a
g
1
?
(
|
|
(
f
l
a
g
2

f
l
a
g
3
.
.
.
)

)
".

X
O

R
To

allow
exactly

one
U

S
E

flag
out

of
m

any
use

"^
^
(
f
l
a
g
1
f
l
a
g
2
.
.
.
)

".

S
ee

R
E

Q
U

IR
E

D
-U

S
E

on
page

28.

M
E
R
G
E
_
T
Y
P
E

This
variable

contains
one

ofthree
possible

values
to

allow
checks

ifitis
norm

alm
erge

w
ith

com
pi-

lation
and

installation
(s
o
u
r
c
e

),installation
ofa

binary
package

(b
i
n
a
r
y

),ora
com

pilation
w

ithoutinstallation
(b
u
i
l
d
o
n
l
y

).
S

ee
M

E
R

G
E-T

Y
P

E
on

page
50.

R
E
P
L
A
C
I
N
G
_
V
E
R
S
I
O
N
S

,R
E
P
L
A
C
E
D
_
B
Y
_
V
E
R
S
I
O
N

These
variables,

valid
in
p
k
g
_
*

,
contain

a
list

of
all

versions
(P
V
R

)
of

this
package

that
w

e
are

replacing,
and

the
version

that
is

replacing
the

current
one,

respectively.
S

ee
R

E
P

LA
C

E-V
E

R
S

IO
N

-V
A

R
S

on
page

52.

R
em

ovals/B
ans

d
o
h
a
r
d

,d
o
s
e
d

B
oth

functions
are

notallow
ed

any
m

ore.
S

ee
B

A
N

N
E

D
-C

O
M

M
A

N
D

S
on

page
55.

N
o
R
D
E
P
E
N
D

fall-back
The

package
m

anager
w

illnotfall
back

to
R
D
E
P
E
N
D
=
D
E
P
E
N
D

ifR
D
E
P
E
N
D

is
undefined.

S
ee

R
D

E
P

E
N

D
-D

E
P

E
N

D
on

page
29.

S
fallback

changes
The

value
ofthe

variable
S

w
illnotau-

tom
atically

be
changed

to
W
O
R
K
D
I
R

,ifS
is

nota
direc-

tory,butabort.
V

irtualpackages
are

the
only

exception.
S

ee
S-W

O
R

K
D

IR
-FA

LLB
A

C
K

on
page

37.

A
A

,K
V

These
variables

are
notdefined

any
m

ore.
S

ee
A

A

on
page

48
and

K
V

on
page

50.
. .

E
A

P
I5

(2012-09-20)

A
dditions/C

hanges

S
ub-slots

The
S
L
O
T

variable
and

slotdependencies
m

ay
contain

an
optionalsub-slotpartthatfollow

s
the

regular
slot,

delim
ited

by
a
/

character;
for

exam
ple

2
/
2
.
3
0

.
The

sub-slotis
used

to
representcases

in
w

hich
an

up-
grade

to
a

new
version

ofa
package

w
ith

a
differentsub-

slotm
ay

require
dependentpackages

to
be

rebuilt.Ifthe
sub-slotis

notspecified
in
S
L
O
T

,itdefaults
to

the
regu-

larslot.
S

ee
S

U
B-S

LO
T

on
page

35.

S
lotoperator

dependencies
P

ackage
dependencies

can
specify

one
ofthe

follow
ing

operators
as

a
suffix,w

hich
w

illaffectupdates
ofruntim

e
dependencies:

:
*

A
ny

slot
value

is
acceptable.

The
package

w
illnot

break
w

hen
its

dependency
is

updated.

:
=

A
ny

slot
value

is
acceptable,

but
the

package
can

break
w

hen
its

dependency
is

updated
to

a
different

slot(orsub-slot).

S
ee

S
LO

T-O
P

E
R

AT
O

R
-D

E
P

S
on

page
35.

P
rofile

I
U
S
E

injection
A

partfrom
the

U
S

E
flags

explicitly
listed

in
I
U
S
E

,additionalflags
can

be
im

plicitly
provided

by
profiles.

S
ee

P
R

O
FILE-IU

S
E-IN

JE
C

T
on

page
52.

A
t-m

ost-one-ofgroups
In
R
E
Q
U
I
R
E
D
_
U
S
E

you
can

use
"?
?
(
f
l
a
g
1
f
l
a
g
2
.
.
.
)

"
to

allow
zero

or
one

U
S

E
flag

outofm
any.S

ee
AT-M

O
S

T-O
N

E-O
F

on
page

32.

P
aralleltests

The
default

for
s
r
c
_
t
e
s
t

runs
e
m
a
k
e

w
ithout-

j
1

now
.

S
ee

PA
R

A
LLE

L-T
E

S
T

S
on

page
40.

e
c
o
n
f

changes
The

e
c
o
n
f

function
now

alw
ays

passes
-
-
d
i
s
a
b
l
e
-
s
i
l
e
n
t
-
r
u
l
e
s

to
c
o
n
f
i
g
u
r
e

.
S

ee
E

C
O

N
F-O

P
T

IO
N

S
on

page
58.

h
a
s
_
v
e
r
s
i
o
n

and
b
e
s
t
_
v
e
r
s
i
o
n

changes
The

tw
o

helpers
support

a
-
-
h
o
s
t
-
r
o
o
t

option
that

causes
the

query
to

apply
to

the
host

root
instead

of
R
O
O
T

.
S

ee
H

O
S

T-R
O

O
T-O

P
T

IO
N

on
page

56.

u
s
e
x

U
sage

for
this

helper
function

is
u
s
e
x

<U
S

E
flag>

[true1][false1][true2][false2].Ifthe
U

S
E

flag
is

set,out-
puts

[true1][true2]
(defaults

to
y
e
s

),
otherw

ise
outputs

[false1][false2]
(defaults

to
n
o

).
S

ee
U

S
E

X
on

page
65.

	Introduction
	Aims and Motivation
	Rationale
	Conventions

	EAPIs
	Definition
	Defined EAPIs
	Reserved EAPIs

	Names and Versions
	Restrictions upon Names
	Category Names
	Package Names
	Slot Names
	USE Flag Names
	Repository Names
	Keyword Names
	EAPI Names

	Version Specifications
	Version Comparison
	Uniqueness of versions

	Tree Layout
	Top Level
	Category Directories
	Package Directories
	The Profiles Directory
	The profiles.desc file
	The thirdpartymirrors file
	use.desc and related files
	The updates directory

	The Licenses Directory
	The Eclass Directory
	The Metadata Directory
	The metadata cache

	Profiles
	General principles
	Files that make up a profile
	The parent file
	The eapi file
	deprecated
	make.defaults
	Simple line-based files
	packages
	packages.build
	package.mask
	package.provided
	package.use
	USE masking and forcing

	Profile variables
	Incremental Variables
	Specific variables and their meanings

	Ebuild File Format
	Ebuild-defined Variables
	Metadata invariance
	Mandatory Ebuild-defined Variables
	Optional Ebuild-defined Variables
	EAPI
	Keywords
	RDEPEND value

	Magic Ebuild-defined Variables

	Dependencies
	Dependency Classes
	Dependency Specification Format
	All-of Dependency Specifications
	Use-conditional Dependency Specifications
	Any-of Dependency Specifications
	Exactly-one-of Dependency Specifications
	At-most-one-of Dependency Specifications
	Package Dependency Specifications
	Use State Constraints
	Restrict
	Properties
	SRC_URI

	Ebuild-defined Functions
	List of Functions
	Initial Working Directories
	pkg_pretend
	pkg_setup
	src_unpack
	src_prepare
	src_configure
	src_compile
	src_test
	src_install
	pkg_preinst
	pkg_postinst
	pkg_prerm
	pkg_postrm
	pkg_config
	pkg_info
	pkg_nofetch
	default_ Phase Functions

	Call Order

	Eclasses
	The inherit command
	Eclass-defined Metadata Keys
	EXPORT_FUNCTIONS

	The Ebuild Environment
	Defined Variables
	USE and IUSE Handling
	REPLACING_VERSIONS and REPLACED_BY_VERSION
	Offset-prefix variables EPREFIX, EROOT and ED

	The state of variables between functions
	Available commands
	System commands
	Commands provided by package dependencies
	Ebuild-specific Commands

	The state of the system between functions

	Merging and Unmerging
	Overview
	Directories
	Permissions
	Empty Directories

	Regular Files
	Permissions
	File modification times
	Configuration File Protection

	Symlinks
	Rewriting

	Hard links
	Other Files

	Metadata Cache
	Directory Contents
	Cache File Format

	Glossary
	Bibliography
	metadata.xml
	Unspecified Items
	Historical Curiosities
	If-else use blocks
	cvs Versions
	use.defaults
	Old-style Virtuals

	Feature Availability by EAPI
	Differences Between EAPIs
	Desk Reference

