summaryrefslogtreecommitdiff
blob: 0b3f98196454b989edf1a736657fe80c1658d3dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
/*- genpng
 *
 * COPYRIGHT: Written by John Cunningham Bowler, 2015.
 * Revised by Glenn Randers-Pehrson, 2017, to add buffer-size check.
 * To the extent possible under law, the authors have waived all copyright and
 * related or neighboring rights to this work.  This work is published from:
 * United States.
 *
 * Generate a PNG with an alpha channel, correctly.
 *
 * This is a test case generator; the resultant PNG files are only of interest
 * to those of us who care about whether the edges of circles are green, red,
 * or yellow.
 *
 * The program generates an RGB+Alpha PNG of a given size containing the given
 * shapes on a transparent background:
 *
 *  genpng width height { shape }
 *    shape ::= color width shape x1 y1 x2 y2
 *
 * 'color' is:
 *
 *  black white red green yellow blue brown purple pink orange gray cyan
 *
 * The point is to have colors that are linguistically meaningful plus that old
 * bugbear of the department store dress murders, Cyan, the only color we argue
 * about.
 *
 * 'shape' is:
 *
 *  circle: an ellipse
 *  square: a rectangle
 *  line: a straight line
 *
 * Each shape is followed by four numbers, these are two points in the output
 * coordinate space (as real numbers) which describe the circle, square, or
 * line.  The shape is filled if it is preceded by 'filled' (not valid for
 * 'line') or is drawn with a line, in which case the width of the line must
 * precede the shape.
 *
 * The whole set of information can be repeated as many times as desired:
 *
 *    shape ::= color width shape x1 y1 x2 y2
 *
 *    color ::= black|white|red|green|yellow|blue
 *    color ::= brown|purple|pink|orange|gray|cyan
 *    width ::= filled
 *    width ::= <number>
 *    shape ::= circle|square|line
 *    x1    ::= <number>
 *    x2    ::= <number>
 *    y1    ::= <number>
 *    y2    ::= <number>
 *
 * The output PNG is generated by down-sampling a 4x supersampled image using
 * a bi-cubic filter.  The bi-cubic has a 2 (output) pixel width, so an 8x8
 * array of super-sampled points contribute to each output pixel.  The value of
 * a super-sampled point is found using an unfiltered, aliased, infinite
 * precision image: Each shape from the last to the first is checked to see if
 * the point is in the drawn area and, if it is, the color of the point is the
 * color of the shape and the alpha is 1, if not the previous shape is checked.
 *
 * This is an aliased algorithm because no filtering is done; a point is either
 * inside or outside each shape and 'close' points do not contribute to the
 * sample.  The down-sampling is relied on to correct the error of not using
 * a filter.
 *
 * The line end-caps are 'flat'; they go through the points.  The square line
 * joins are mitres; the outside of the lines are continued to the point of
 * intersection.
 */
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

/* Normally use <png.h> here to get the installed libpng, but this is done to
 * ensure the code picks up the local libpng implementation:
 */
#include "../../png.h"

#if defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) && defined(PNG_STDIO_SUPPORTED)

static const struct color
{
   const char *name;
   double      red;
   double      green;
   double      blue;
} colors[] =
/* color ::= black|white|red|green|yellow|blue
 * color ::= brown|purple|pink|orange|gray|cyan
 */
{
   { "black",   0,    0,  0 },
   { "white",   1,    1,  1 },
   { "red",     1,    0,  0 },
   { "green",   0,    1,  0 },
   { "yellow",  1,    1,  0 },
   { "blue",    0,    0,  1 },
   { "brown",  .5, .125,  0 },
   { "purple",  1,    0,  1 },
   { "pink",    1,   .5, .5 },
   { "orange",  1,   .5,  0 },
   { "gray",    0,   .5, .5 },
   { "cyan",    0,    1,  1 }
};
#define color_count ((sizeof colors)/(sizeof colors[0]))

static const struct color *
color_of(const char *arg)
{
   int icolor = color_count;

   while (--icolor >= 0)
   {
      if (strcmp(colors[icolor].name, arg) == 0)
         return colors+icolor;
   }

   fprintf(stderr, "genpng: invalid color %s\n", arg);
   exit(1);
}

static double
width_of(const char *arg)
{
   if (strcmp(arg, "filled") == 0)
      return 0;

   else
   {
      char *ep = NULL;
      double w = strtod(arg, &ep);

      if (ep != NULL && *ep == 0 && w > 0)
         return w;
   }

   fprintf(stderr, "genpng: invalid line width %s\n", arg);
   exit(1);
}

static double
coordinate_of(const char *arg)
{
   char *ep = NULL;
   double w = strtod(arg, &ep);

   if (ep != NULL && *ep == 0)
      return w;

   fprintf(stderr, "genpng: invalid coordinate value %s\n", arg);
   exit(1);
}

struct arg; /* forward declaration */

typedef int (*shape_fn_ptr)(const struct arg *arg, double x, double y);
   /* A function to determine if (x,y) is inside the shape.
    *
    * There are two implementations:
    *
    *    inside_fn: returns true if the point is inside
    *    check_fn:  returns;
    *       -1: the point is outside the shape by more than the filter width (2)
    *        0: the point may be inside the shape
    *       +1: the point is inside the shape by more than the filter width
    */
#define OUTSIDE (-1)
#define INSIDE  (1)

struct arg
{
   const struct color *color;
   shape_fn_ptr        inside_fn;
   shape_fn_ptr        check_fn;
   double              width; /* line width, 0 for 'filled' */
   double              x1, y1, x2, y2;
};

/* IMPLEMENTATION NOTE:
 *
 * We want the contribution of each shape to the sample corresponding to each
 * pixel.  This could be obtained by super sampling the image to infinite
 * dimensions, finding each point within the shape and assigning that a value
 * '1' while leaving every point outside the shape with value '0' then
 * downsampling to the image size with sinc; computationally very expensive.
 *
 * Approximations are as follows:
 *
 * 1) If the pixel coordinate is within the shape assume the sample has the
 *    shape color and is opaque, else assume there is no contribution from
 *    the shape.
 *
 *    This is the equivalent of aliased rendering or resampling an image with
 *    a block filter.  The maximum error in the calculated alpha (which will
 *    always be 0 or 1) is 0.5.
 *
 * 2) If the shape is within a square of size 1x1 centered on the pixel assume
 *    that the shape obscures an amount of the pixel equal to its area within
 *    that square.
 *
 *    This is the equivalent of 'pixel coverage' alpha calculation or resampling
 *    an image with a bi-linear filter.  The maximum error is over 0.2, but the
 *    results are often acceptable.
 *
 *    This can be approximated by applying (1) to a super-sampled image then
 *    downsampling with a bi-linear filter.  The error in the super-sampled
 *    image is 0.5 per sample, but the resampling reduces this.
 *
 * 3) Use a better filter with a super-sampled image; in the limit this is the
 *    sinc() approach.
 *
 * 4) Do the geometric calculation; a bivariate definite integral across the
 *    shape, unfortunately this means evaluating Si(x), the integral of sinc(x),
 *    which is still a lot of math.
 *
 * This code uses approach (3) with a bi-cubic filter and 8x super-sampling
 * and method (1) for the super-samples.  This means that the sample is either
 * 0 or 1, depending on whether the sub-pixel is within or outside the shape.
 * The bi-cubic weights are also fixed and the 16 required weights are
 * pre-computed here (note that the 'scale' setting will need to be changed if
 * 'super' is increased).
 *
 * The code also calculates a sum to the edge of the filter. This is not
 * currently used by could be used to optimize the calculation.
 */
#if 0 /* bc code */
scale=10
super=8
define bicubic(x) {
   if (x <= 1) return (1.5*x - 2.5)*x*x + 1;
   if (x <  2) return (((2.5 - 0.5*x)*x - 4)*x + 2);
   return 0;
}
define sum(x) {
   auto s;
   s = 0;
   while (x < 2*super) {
      s = s + bicubic(x/super);
      x = x + 1;
   }
   return s;
}
define results(x) {
   auto b, s;
   b = bicubic(x/super);
   s = sum(x);

   print "   /*", x, "*/ { ", b, ", ", s, " }";
   return 1;
}
x=0
while (x<2*super) {
   x = x + results(x)
   if (x < 2*super) print ","
   print "\n"
}
quit
#endif

#define BICUBIC1(x) /*     |x| <= 1 */ ((1.5*(x)* - 2.5)*(x)*(x) + 1)
#define BICUBIC2(x) /* 1 < |x| <  2 */ (((2.5 - 0.5*(x))*(x) - 4)*(x) + 2)
#define FILTER_WEIGHT 9 /* Twice the first sum below */
#define FILTER_WIDTH  2 /* Actually half the width; -2..+2 */
#define FILTER_STEPS  8 /* steps per filter unit */
static const double
bicubic[16][2] =
{
   /* These numbers are exact; the weight for the filter is 1/9, but this
    * would make the numbers inexact, so it is not included here.
    */
   /*          bicubic      sum        */
   /* 0*/ { 1.0000000000, 4.5000000000 },
   /* 1*/ {  .9638671875, 3.5000000000 },
   /* 2*/ {  .8671875000, 2.5361328125 },
   /* 3*/ {  .7275390625, 1.6689453125 },
   /* 4*/ {  .5625000000,  .9414062500 },
   /* 5*/ {  .3896484375,  .3789062500 },
   /* 6*/ {  .2265625000, -.0107421875 },
   /* 7*/ {  .0908203125, -.2373046875 },
   /* 8*/ {            0, -.3281250000 },
   /* 9*/ { -.0478515625, -.3281250000 },
   /*10*/ { -.0703125000, -.2802734375 },
   /*11*/ { -.0732421875, -.2099609375 },
   /*12*/ { -.0625000000, -.1367187500 },
   /*13*/ { -.0439453125, -.0742187500 },
   /*14*/ { -.0234375000, -.0302734375 },
   /*15*/ { -.0068359375, -.0068359375 }
};

static double
alpha_calc(const struct arg *arg, double x, double y)
{
   /* For [x-2..x+2],[y-2,y+2] calculate the weighted bicubic given a function
    * which tells us whether a point is inside or outside the shape.  First
    * check if we need to do this at all:
    */
   switch (arg->check_fn(arg, x, y))
   {
      case OUTSIDE:
         return 0; /* all samples outside the shape */

      case INSIDE:
         return 1; /* all samples inside the shape */

      default:
      {
         int dy;
         double alpha = 0;

#        define FILTER_D (FILTER_WIDTH*FILTER_STEPS-1)
         for (dy=-FILTER_D; dy<=FILTER_D; ++dy)
         {
            double wy = bicubic[abs(dy)][0];

            if (wy != 0)
            {
               double alphay = 0;
               int dx;

               for (dx=-FILTER_D; dx<=FILTER_D; ++dx)
               {
                  double wx = bicubic[abs(dx)][0];

                  if (wx != 0 && arg->inside_fn(arg, x+dx/16, y+dy/16))
                     alphay += wx;
               }

               alpha += wy * alphay;
            }
         }

         /* This needs to be weighted for each dimension: */
         return alpha / (FILTER_WEIGHT*FILTER_WEIGHT);
      }
   }
}

/* These are the shape functions. */
/* "square",
 * { inside_square_filled, check_square_filled },
 * { inside_square, check_square }
 */
static int
square_check(double x, double y, double x1, double y1, double x2, double y2)
   /* Is x,y inside the square (x1,y1)..(x2,y2)? */
{
   /* Do a modified Cohen-Sutherland on one point, bit patterns that indicate
    * 'outside' are:
    *
    *   x<x1 | x<y1 | x<x2 | x<y2
    *    0      x      0      x     To the right
    *    1      x      1      x     To the left
    *    x      0      x      0     Below
    *    x      1      x      1     Above
    *
    * So 'inside' is (x<x1) != (x<x2) && (y<y1) != (y<y2);
    */
   return ((x<x1) ^ (x<x2)) & ((y<y1) ^ (y<y2));
}

static int
inside_square_filled(const struct arg *arg, double x, double y)
{
   return square_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2);
}

static int
square_check_line(const struct arg *arg, double x, double y, double w)
   /* Check for a point being inside the boundaries implied by the given arg
    * and assuming a width 2*w each side of the boundaries.  This returns the
    * 'check' INSIDE/OUTSIDE/0 result but note the semantics:
    *
    *          +--------------+
    *          |              |   OUTSIDE
    *          |   INSIDE     |
    *          |              |
    *          +--------------+
    *
    * And '0' means within the line boundaries.
    */
{
   double cx = (arg->x1+arg->x2)/2;
   double wx = fabs(arg->x1-arg->x2)/2;
   double cy = (arg->y1+arg->y2)/2;
   double wy = fabs(arg->y1-arg->y2)/2;

   if (square_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w))
   {
      /* Inside, but maybe too far; check for the redundant case where
       * the lines overlap:
       */
      wx -= w;
      wy -= w;
      if (wx > 0 && wy > 0 && square_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy))
         return INSIDE; /* between (inside) the boundary lines. */

      return 0; /* inside the lines themselves. */
   }

   return OUTSIDE; /* outside the boundary lines. */
}

static int
check_square_filled(const struct arg *arg, double x, double y)
{
   /* The filter extends +/-FILTER_WIDTH each side of each output point, so
    * the check has to expand and contract the square by that amount; '0'
    * means close enough to the edge of the square that the bicubic filter has
    * to be run, OUTSIDE means alpha==0, INSIDE means alpha==1.
    */
   return square_check_line(arg, x, y, FILTER_WIDTH);
}

static int
inside_square(const struct arg *arg, double x, double y)
{
   /* Return true if within the drawn lines, else false, no need to distinguish
    * INSIDE vs OUTSIDE here:
    */
   return square_check_line(arg, x, y, arg->width/2) == 0;
}

static int
check_square(const struct arg *arg, double x, double y)
{
   /* So for this function a result of 'INSIDE' means inside the actual lines.
    */
   double w = arg->width/2;

   if (square_check_line(arg, x, y, w+FILTER_WIDTH) == 0)
   {
      /* Somewhere close to the boundary lines. If far enough inside one of
       * them then we can return INSIDE:
       */
      w -= FILTER_WIDTH;

      if (w > 0 && square_check_line(arg, x, y, w) == 0)
         return INSIDE;

      /* Point is somewhere in the filter region: */
      return 0;
   }

   else /* Inside or outside the square by more than w+FILTER_WIDTH. */
      return OUTSIDE;
}

/* "circle",
 * { inside_circle_filled, check_circle_filled },
 * { inside_circle, check_circle }
 *
 * The functions here are analoguous to the square ones; however, they check
 * the corresponding ellipse as opposed to the rectangle.
 */
static int
circle_check(double x, double y, double x1, double y1, double x2, double y2)
{
   if (square_check(x, y, x1, y1, x2, y2))
   {
      /* Inside the square, so maybe inside the circle too: */
      const double cx = (x1 + x2)/2;
      const double cy = (y1 + y2)/2;
      const double dx = x1 - x2;
      const double dy = y1 - y2;

      x = (x - cx)/dx;
      y = (y - cy)/dy;

      /* It is outside if the distance from the center is more than half the
       * diameter:
       */
      return x*x+y*y < .25;
   }

   return 0; /* outside */
}

static int
inside_circle_filled(const struct arg *arg, double x, double y)
{
   return circle_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2);
}

static int
circle_check_line(const struct arg *arg, double x, double y, double w)
   /* Check for a point being inside the boundaries implied by the given arg
    * and assuming a width 2*w each side of the boundaries.  This function has
    * the same semantic as square_check_line but tests the circle.
    */
{
   double cx = (arg->x1+arg->x2)/2;
   double wx = fabs(arg->x1-arg->x2)/2;
   double cy = (arg->y1+arg->y2)/2;
   double wy = fabs(arg->y1-arg->y2)/2;

   if (circle_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w))
   {
      /* Inside, but maybe too far; check for the redundant case where
       * the lines overlap:
       */
      wx -= w;
      wy -= w;
      if (wx > 0 && wy > 0 && circle_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy))
         return INSIDE; /* between (inside) the boundary lines. */

      return 0; /* inside the lines themselves. */
   }

   return OUTSIDE; /* outside the boundary lines. */
}

static int
check_circle_filled(const struct arg *arg, double x, double y)
{
   return circle_check_line(arg, x, y, FILTER_WIDTH);
}

static int
inside_circle(const struct arg *arg, double x, double y)
{
   return circle_check_line(arg, x, y, arg->width/2) == 0;
}

static int
check_circle(const struct arg *arg, double x, double y)
{
   /* Exactly as the 'square' code.  */
   double w = arg->width/2;

   if (circle_check_line(arg, x, y, w+FILTER_WIDTH) == 0)
   {
      w -= FILTER_WIDTH;

      if (w > 0 && circle_check_line(arg, x, y, w) == 0)
         return INSIDE;

      /* Point is somewhere in the filter region: */
      return 0;
   }

   else /* Inside or outside the square by more than w+FILTER_WIDTH. */
      return OUTSIDE;
}

/* "line",
 * { NULL, NULL },  There is no 'filled' line.
 * { inside_line, check_line }
 */
static int
line_check(double x, double y, double x1, double y1, double x2, double y2,
   double w, double expand)
{
   /* Shift all the points to (arg->x1, arg->y1) */
   double lx = x2 - x1;
   double ly = y2 - y1;
   double len2 = lx*lx + ly*ly;
   double cross, dot;

   x -= x1;
   y -= y1;

   /* The dot product is the distance down the line, the cross product is
    * the distance away from the line:
    *
    *    distance = |cross| / sqrt(len2)
    */
   cross = x * ly - y * lx;

   /* If 'distance' is more than w the point is definitely outside the line:
    *
    *     distance >= w
    *     |cross|  >= w * sqrt(len2)
    *     cross^2  >= w^2 * len2:
    */
   if (cross*cross >= (w+expand)*(w+expand)*len2)
      return 0; /* outside */

   /* Now find the distance *along* the line; this comes from the dot product
    * lx.x+ly.y. The actual distance (in pixels) is:
    *
    *   distance = dot / sqrt(len2)
    */
   dot = lx * x + ly * y;

   /* The test for 'outside' is:
    *
    *    distance < 0 || distance > sqrt(len2)
    *                 -> dot / sqrt(len2) > sqrt(len2)
    *                 -> dot > len2
    *
    * But 'expand' is used for the filter width and needs to be handled too:
    */
   return dot > -expand && dot < len2+expand;
}

static int
inside_line(const struct arg *arg, double x, double y)
{
   return line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2, 0);
}

static int
check_line(const struct arg *arg, double x, double y)
{
   /* The end caps of the line must be checked too; it's not enough just to
    * widen the line by FILTER_WIDTH; 'expand' exists for this purpose:
    */
   if (line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2,
       FILTER_WIDTH))
   {
      /* Inside the line+filter; far enough inside that the filter isn't
       * required?
       */
      if (arg->width > 2*FILTER_WIDTH &&
          line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2,
             -FILTER_WIDTH))
         return INSIDE;

      return 0;
   }

   return OUTSIDE;
}

static const struct
{
   const char    *name;
   shape_fn_ptr   function[2/*fill,line*/][2];
#  define         FN_INSIDE 0
#  define         FN_CHECK 1
} shape_defs[] =
{
   {  "square",
      {  { inside_square_filled, check_square_filled },
         { inside_square, check_square } }
   },
   {  "circle",
      {  { inside_circle_filled, check_circle_filled },
         { inside_circle, check_circle } }
   },
   {  "line",
      {  { NULL, NULL },
         { inside_line, check_line } }
   }
};

#define shape_count ((sizeof shape_defs)/(sizeof shape_defs[0]))

static shape_fn_ptr
shape_of(const char *arg, double width, int f)
{
   unsigned int i;

   for (i=0; i<shape_count; ++i) if (strcmp(shape_defs[i].name, arg) == 0)
   {
      shape_fn_ptr fn = shape_defs[i].function[width != 0][f];

      if (fn != NULL)
         return fn;

      fprintf(stderr, "genpng: %s %s not supported\n",
         width == 0 ? "filled" : "unfilled", arg);
      exit(1);
   }

   fprintf(stderr, "genpng: %s: not a valid shape name\n", arg);
   exit(1);
}

static void
parse_arg(struct arg *arg, const char **argv/*7 arguments*/)
{
   /* shape ::= color width shape x1 y1 x2 y2 */
   arg->color = color_of(argv[0]);
   arg->width = width_of(argv[1]);
   arg->inside_fn = shape_of(argv[2], arg->width, FN_INSIDE);
   arg->check_fn = shape_of(argv[2], arg->width, FN_CHECK);
   arg->x1 = coordinate_of(argv[3]);
   arg->y1 = coordinate_of(argv[4]);
   arg->x2 = coordinate_of(argv[5]);
   arg->y2 = coordinate_of(argv[6]);
}

static png_uint_32
read_wh(const char *name, const char *str)
   /* read a PNG width or height */
{
   char *ep = NULL;
   unsigned long ul = strtoul(str, &ep, 10);

   if (ep != NULL && *ep == 0 && ul > 0 && ul <= 0x7fffffff)
      return (png_uint_32)/*SAFE*/ul;

   fprintf(stderr, "genpng: %s: invalid number %s\n", name, str);
   exit(1);
}

static void
pixel(png_uint_16p p, struct arg *args, int nargs, double x, double y)
{
   /* Fill in the pixel by checking each shape (args[nargs]) for effects on
    * the corresponding sample:
    */
   double r=0, g=0, b=0, a=0;

   while (--nargs >= 0 && a != 1)
   {
      /* NOTE: alpha_calc can return a value outside the range 0..1 with the
       * bicubic filter.
       */
      const double alpha = alpha_calc(args+nargs, x, y) * (1-a);

      r += alpha * args[nargs].color->red;
      g += alpha * args[nargs].color->green;
      b += alpha * args[nargs].color->blue;
      a += alpha;
   }

   /* 'a' may be negative or greater than 1; if it is, negative clamp the
    * pixel to 0 if >1 clamp r/g/b:
    */
   if (a > 0)
   {
      if (a > 1)
      {
         if (r > 1) r = 1;
         if (g > 1) g = 1;
         if (b > 1) b = 1;
         a = 1;
      }

      /* And fill in the pixel: */
      p[0] = (png_uint_16)/*SAFE*/round(r * 65535);
      p[1] = (png_uint_16)/*SAFE*/round(g * 65535);
      p[2] = (png_uint_16)/*SAFE*/round(b * 65535);
      p[3] = (png_uint_16)/*SAFE*/round(a * 65535);
   }

   else
      p[3] = p[2] = p[1] = p[0] = 0;
}

int
main(int argc, const char **argv)
{
   int convert_to_8bit = 0;

   /* There is one option: --8bit: */
   if (argc > 1 && strcmp(argv[1], "--8bit") == 0)
      --argc, ++argv, convert_to_8bit = 1;

   if (argc >= 3)
   {
      png_uint_16p buffer;
      int nshapes;
      png_image image;
#     define max_shapes 256
      struct arg arg_list[max_shapes];

      /* The libpng Simplified API write code requires a fully initialized
       * structure.
       */
      memset(&image, 0, sizeof image);
      image.version = PNG_IMAGE_VERSION;
      image.opaque = NULL;
      image.width = read_wh("width", argv[1]);
      image.height = read_wh("height", argv[2]);
      image.format = PNG_FORMAT_LINEAR_RGB_ALPHA;
      image.flags = 0;
      image.colormap_entries = 0;

      /* Check the remainder of the arguments */
      for (nshapes=0; 3+7*(nshapes+1) <= argc && nshapes < max_shapes;
           ++nshapes)
         parse_arg(arg_list+nshapes, argv+3+7*nshapes);

      if (3+7*nshapes != argc)
      {
         fprintf(stderr, "genpng: %s: too many arguments\n", argv[3+7*nshapes]);
         return 1;
      }

#if 1
     /* TO do: determine whether this guard against overflow is necessary.
      * This comment in png.h indicates that it should be safe: "libpng will
      * refuse to process an image where such an overflow would occur", but
      * I don't see where the image gets rejected when the buffer is too
      * large before the malloc is attempted.
      */
      if (image.height > ((size_t)(-1))/(8*image.width)) {
         fprintf(stderr, "genpng: image buffer would be too big");
         return 1;
      }
#endif

      /* Create the buffer: */
      buffer = malloc(PNG_IMAGE_SIZE(image));

      if (buffer != NULL)
      {
         png_uint_32 y;

         /* Write each row... */
         for (y=0; y<image.height; ++y)
         {
            png_uint_32 x;

            /* Each pixel in each row: */
            for (x=0; x<image.width; ++x)
               pixel(buffer + 4*(x + y*image.width), arg_list, nshapes, x, y);
         }

         /* Write the result (to stdout) */
         if (png_image_write_to_stdio(&image, stdout, convert_to_8bit,
             buffer, 0/*row_stride*/, NULL/*colormap*/))
         {
            free(buffer);
            return 0; /* success */
         }

         else
            fprintf(stderr, "genpng: write stdout: %s\n", image.message);

         free(buffer);
      }

      else
         fprintf(stderr, "genpng: out of memory: %lu bytes\n",
               (unsigned long)PNG_IMAGE_SIZE(image));
   }

   else
   {
      /* Wrong number of arguments */
      fprintf(stderr, "genpng: usage: genpng [--8bit] width height {shape}\n"
         " Generate a transparent PNG in RGBA (truecolor+alpha) format\n"
         " containing the given shape or shapes.  Shapes are defined:\n"
         "\n"
         "  shape ::= color width shape x1 y1 x2 y2\n"
         "  color ::= black|white|red|green|yellow|blue\n"
         "  color ::= brown|purple|pink|orange|gray|cyan\n"
         "  width ::= filled|<number>\n"
         "  shape ::= circle|square|line\n"
         "  x1,x2 ::= <number>\n"
         "  y1,y2 ::= <number>\n"
         "\n"
         " Numbers are floating point numbers describing points relative to\n"
         " the top left of the output PNG as pixel coordinates.  The 'width'\n"
         " parameter is either the width of the line (in output pixels) used\n"
         " to draw the shape or 'filled' to indicate that the shape should\n"
         " be filled with the color.\n"
         "\n"
         " Colors are interpreted loosely to give access to the eight full\n"
         " intensity RGB values:\n"
         "\n"
         "  black, red, green, blue, yellow, cyan, purple, white,\n"
         "\n"
         " Cyan is full intensity blue+green; RGB(0,1,1), plus the following\n"
         " lower intensity values:\n"
         "\n"
         "  brown:  red+orange:  RGB(0.5, 0.125, 0) (dark red+orange)\n"
         "  pink:   red+white:   RGB(1.0, 0.5,   0.5)\n"
         "  orange: red+yellow:  RGB(1.0, 0.5,   0)\n"
         "  gray:   black+white: RGB(0.5, 0.5,   0.5)\n"
         "\n"
         " The RGB values are selected to make detection of aliasing errors\n"
         " easy. The names are selected to make the description of errors\n"
         " easy.\n"
         "\n"
         " The PNG is written to stdout, if --8bit is given a 32bpp RGBA sRGB\n"
         " file is produced, otherwise a 64bpp RGBA linear encoded file is\n"
         " written.\n");
   }

   return 1;
}
#endif /* SIMPLIFIED_WRITE && STDIO */