1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
/* Copyright (C) 2001-2019 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Configurable algorithm for decomposing a spot into trapezoids. */
/*
* Since we need several statically defined variants of this algorithm,
* we store it in .h file and include it several times into gxfill.c .
* Configuration macros (template arguments) are :
*
* IS_SPOTAN - is the target device a spot analyzer ("spotan").
* SMART_WINDING - even-odd filling rule for each contour independently.
* FILL_ADJUST - fill adjustment is not zero
* FILL_DIRECT - See LOOP_FILL_RECTANGLE_DIRECT.
* TEMPLATE_spot_into_trapezoids - the name of the procedure to generate.
* ADVANCE_WINDING(inside, alp, ll) - a macro for advancing the winding counter.
* INSIDE_PATH_P(inside, rule) - a macro for checking the winding rule.
*/
#if defined(TEMPLATE_spot_into_trapezoids) && defined(INCR) && defined(FILL_ADJUST) && defined(LOOP_FILL_RECTANGLE_DIRECT) && defined(COVERING_PIXEL_CENTERS)
/* ---------------- Trapezoid decomposition loop ---------------- */
/* Takes lines off of y_list and adds them to */
/* x_list as needed. band_mask limits the size of each band, */
/* by requiring that ((y1 - 1) & band_mask) == (y0 & band_mask). */
static int
TEMPLATE_spot_into_trapezoids (line_list *ll, fixed band_mask)
{
const fill_options fo = *ll->fo;
int rule = fo.rule;
const fixed y_limit = fo.ymax;
active_line *yll = ll->y_list;
fixed y;
int code;
const bool all_bands = fo.is_spotan;
if (yll == 0)
return 0; /* empty list */
y = yll->start.y; /* first Y value */
ll->x_list = 0;
ll->x_head.x_current = min_fixed; /* stop backward scan */
while (1) {
fixed y1;
active_line *alp;
bool covering_pixel_centers;
INCR(iter);
/* Move newly active lines from y to x list. */
while (yll != 0 && yll->start.y == y) {
active_line *ynext = yll->next; /* insert smashes next/prev links */
ll->y_list = ynext;
if (ll->y_line == yll)
ll->y_line = ynext;
if (ynext != NULL)
ynext->prev = NULL;
if (yll->direction == DIR_HORIZONTAL) {
/*
* This is a hack to make sure that isolated horizontal
* lines get stroked.
*/
int yi = fixed2int_pixround(y - (!FILL_ADJUST ? 0 : fo.adjust_below));
int xi, wi;
if (yll->start.x <= yll->end.x) {
xi = fixed2int_pixround(yll->start.x - (!FILL_ADJUST ? 0 : fo.adjust_left));
wi = fixed2int_pixround(yll->end.x + (!FILL_ADJUST ? 0 : fo.adjust_right)) - xi;
} else {
xi = fixed2int_pixround(yll->end.x - (!FILL_ADJUST ? 0 : fo.adjust_left));
wi = fixed2int_pixround(yll->start.x + (!FILL_ADJUST ? 0 : fo.adjust_right)) - xi;
}
code = LOOP_FILL_RECTANGLE_DIRECT(&fo, xi, yi, wi, 1);
if (code < 0)
return code;
} else
insert_x_new(yll, ll);
yll = ynext;
}
/* Mustn't leave by Y before process_h_segments. */
if (ll->x_list == 0) { /* No active lines, skip to next start */
if (yll == 0)
break; /* no lines left */
/* We don't close margin set here because the next set
* may fall into same window. */
y = yll->start.y;
ll->h_list1 = ll->h_list0;
ll->h_list0 = 0;
continue;
}
/* Find the next evaluation point. */
/* Start by finding the smallest y value */
/* at which any currently active line ends */
/* (or the next to-be-active line begins). */
y1 = (yll != 0 ? yll->start.y : ll->y_break);
/* Make sure we don't exceed the maximum band height. */
{
fixed y_band = y | ~band_mask;
if (y1 > y_band)
y1 = y_band + 1;
}
for (alp = ll->x_list; alp != 0; alp = alp->next) {
if (alp->end.y < y1)
y1 = alp->end.y;
}
# ifdef DEBUG
if (gs_debug_c('F')) {
dmlprintf2(ll->memory, "[F]before loop: y=%f y1=%f:\n",
fixed2float(y), fixed2float(y1));
print_line_list(ll->memory, ll->x_list);
}
# endif
if (y == y1) {
code = process_h_segments(ll, y);
if (code < 0)
return code;
{ int code1 = move_al_by_y(ll, y1);
if (code1 < 0)
return code1;
}
if (code > 0) {
yll = ll->y_list; /* add_y_line_aux in process_h_segments changes it. */
continue;
}
}
if (y >= y_limit)
break;
/* Now look for line intersections before y1. */
covering_pixel_centers = COVERING_PIXEL_CENTERS(y, y1,
(!FILL_ADJUST ? 0 : fo.adjust_below),
(!FILL_ADJUST ? 0 : fo.adjust_above));
if (y != y1) {
intersect_al(ll, y, &y1, (covering_pixel_centers ? 1 : -1), all_bands); /* May change y1. */
covering_pixel_centers = COVERING_PIXEL_CENTERS(y, y1,
(!FILL_ADJUST ? 0 : fo.adjust_below),
(!FILL_ADJUST ? 0 : fo.adjust_above));
}
/* Fill a multi-trapezoid band for the active lines. */
if (covering_pixel_centers || all_bands) {
int inside = 0;
active_line *flp = NULL;
if (SMART_WINDING)
memset(ll->windings, 0, sizeof(ll->windings[0]) * ll->contour_count);
INCR(band);
/* Generate trapezoids */
for (alp = ll->x_list; alp != 0; alp = alp->next) {
int code;
print_al(ll->memory, "step", alp);
INCR(band_step);
if (!INSIDE_PATH_P(inside, rule)) { /* i.e., outside */
ADVANCE_WINDING(inside, alp, ll);
if (INSIDE_PATH_P(inside, rule)) /* about to go in */
flp = alp;
continue;
}
/* We're inside a region being filled. */
ADVANCE_WINDING(inside, alp, ll);
if (INSIDE_PATH_P(inside, rule)) /* not about to go out */
continue;
/* We just went from inside to outside,
chech whether we'll immediately go inside. */
if (alp->next != NULL &&
alp->x_current == alp->next->x_current &&
alp->x_next == alp->next->x_next) {
/* If the next trapezoid contacts this one, unite them.
This simplifies data for the spot analyzer
and reduces the number of trapezoids in the rasterization.
Note that the topology possibly isn't exactly such
as we generate by this uniting :
Due to arithmetic errors in x_current, x_next
we can unite things, which really are not contacting.
But this level of the topology precision is enough for
the glyph grid fitting.
Also note that
while a rasterization with dropout prevention
it may cause a shift when choosing a pixel
to paint with a narrow trapezoid. */
alp = alp->next;
ADVANCE_WINDING(inside, alp, ll);
continue;
}
/* We just went from inside to outside, so fill the region. */
INCR(band_fill);
if (FILL_ADJUST && !(flp->end.x == flp->start.x && alp->end.x == alp->start.x) &&
(fo.adjust_below | fo.adjust_above) != 0) {
if (FILL_DIRECT)
code = slant_into_trapezoids__fd(ll, flp, alp, y, y1);
else
code = slant_into_trapezoids__nd(ll, flp, alp, y, y1);
} else {
fixed ybot = max(y, fo.pbox->p.y);
fixed ytop = min(y1, fo.pbox->q.y);
if (IS_SPOTAN) {
/* We can't pass data through the device interface because
we need to pass segment pointers. We're unhappy of that. */
code = gx_san_trap_store((gx_device_spot_analyzer *)fo.dev,
y, y1, flp->x_current, alp->x_current, flp->x_next, alp->x_next,
flp->pseg, alp->pseg, flp->direction, alp->direction);
} else {
if (flp->end.x == flp->start.x && alp->end.x == alp->start.x) {
if (FILL_ADJUST) {
ybot = max(y - fo.adjust_below, fo.pbox->p.y);
ytop = min(y1 + fo.adjust_above, fo.pbox->q.y);
}
if (ytop > ybot) {
int yi = fixed2int_pixround(ybot);
int hi = fixed2int_pixround(ytop) - yi;
int xli = fixed2int_var_pixround(flp->end.x - (!FILL_ADJUST ? 0 : fo.adjust_left));
int xi = fixed2int_var_pixround(alp->end.x + (!FILL_ADJUST ? 0 : fo.adjust_right));
#ifdef FILL_ZERO_WIDTH
if ( xli == xi && FILL_ADJUST &&
(fo.adjust_right | fo.adjust_left) != 0 ) {
#else
if (0) {
#endif
/*
* The scan is empty but we should paint something
* against a dropout. Choose one of two pixels which
* is closer to the "axis".
*/
fixed xx = int2fixed(xli);
if (xx - flp->end.x < alp->end.x - xx)
++xi;
else
--xli;
}
code = LOOP_FILL_RECTANGLE_DIRECT(&fo, xli, yi, xi - xli, hi);
} else
code = 0;
} else if (ybot < ytop) {
gs_fixed_edge le, re;
le.start = flp->start;
le.end = flp->end;
re.start = alp->start;
re.end = alp->end;
code = fo.fill_trap(fo.dev,
&le, &re, ybot, ytop, false, fo.pdevc, fo.lop);
} else
code = 0;
}
}
if (code < 0)
return code;
}
}
code = move_al_by_y(ll, y1);
if (code < 0)
return code;
ll->h_list1 = ll->h_list0;
ll->h_list0 = 0;
y = y1;
}
return 0;
}
#else
int dummy;
#endif
|