1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
|
/* Copyright (C) 2001-2019 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Image setup procedures for Ghostscript library */
#include "memory_.h"
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsstruct.h"
#include "gscspace.h"
#include "gsmatrix.h" /* for gsiparam.h */
#include "gsimage.h"
#include "gxarith.h" /* for igcd */
#include "gxdevice.h"
#include "gxiparam.h"
#include "gxpath.h" /* for gx_effective_clip_path */
#include "gximask.h"
#include "gzstate.h"
#include "gsutil.h"
#include "gxdevsop.h"
#include "gximage.h"
/*
The main internal invariant for the gs_image machinery is
straightforward. The state consists primarily of N plane buffers
(planes[]).
*/
typedef struct image_enum_plane_s {
/*
The state of each plane consists of:
- A row buffer, aligned and (logically) large enough to hold one scan line
for that plane. (It may have to be reallocated if the plane width or
depth changes.) A row buffer is "full" if it holds exactly a full scan
line.
*/
gs_string row;
/*
- A position within the row buffer, indicating how many initial bytes are
occupied.
*/
uint pos;
/*
- A (retained) source string, which may be empty (size = 0).
*/
gs_const_string source;
} image_enum_plane_t;
/*
The possible states for each plane do not depend on the state of any other
plane. Either:
- pos = 0, source.size = 0.
- If the underlying image processor says the plane is currently wanted,
either:
- pos = 0, source.size >= one full row of data for this plane. This
case allows us to avoid copying the data from the source string to the
row buffer if the client is providing data in blocks of at least one
scan line.
- pos = full, source.size may have any value.
- pos > 0, pos < full, source.size = 0;
- If the underlying image processor says the plane is not currently
wanted:
- pos = 0, source.size may have any value.
This invariant holds at the beginning and end of each call on
gs_image_next_planes. Note that for each plane, the "plane wanted" status
and size of a full row may change after each call of plane_data. As
documented in gxiparam.h, we assume that a call of plane_data can only
change a plane's status from "wanted" to "not wanted", or change the width
or depth of a wanted plane, if data for that plane was actually supplied
(and used).
*/
/* Define the enumeration state for this interface layer. */
/*typedef struct gs_image_enum_s gs_image_enum; *//* in gsimage.h */
struct gs_image_enum_s {
/* The following are set at initialization time. */
gs_memory_t *memory;
gx_device *dev; /* if 0, just skip over the data */
gx_image_enum_common_t *info; /* driver bookkeeping structure */
int num_planes;
int height;
bool wanted_varies;
/* The following are updated dynamically. */
int plane_index; /* index of next plane of data, */
/* only needed for gs_image_next */
int y;
bool error;
byte wanted[GS_IMAGE_MAX_COMPONENTS]; /* cache gx_image_planes_wanted */
byte client_wanted[GS_IMAGE_MAX_COMPONENTS]; /* see gsimage.h */
image_enum_plane_t planes[GS_IMAGE_MAX_COMPONENTS]; /* see above */
/*
* To reduce setup for transferring complete rows, we maintain a
* partially initialized parameter array for gx_image_plane_data_rows.
* The data member is always set just before calling
* gx_image_plane_data_rows; the data_x and raster members are reset
* when needed.
*/
gx_image_plane_t image_planes[GS_IMAGE_MAX_COMPONENTS];
};
gs_private_st_composite(st_gs_image_enum, gs_image_enum, "gs_image_enum",
gs_image_enum_enum_ptrs, gs_image_enum_reloc_ptrs);
#define gs_image_enum_num_ptrs 2
/* GC procedures */
static
ENUM_PTRS_WITH(gs_image_enum_enum_ptrs, gs_image_enum *eptr)
{
/* Enumerate the data planes. */
index -= gs_image_enum_num_ptrs;
if (index < eptr->num_planes)
ENUM_RETURN_STRING_PTR(gs_image_enum, planes[index].source);
index -= eptr->num_planes;
if (index < eptr->num_planes)
ENUM_RETURN_STRING_PTR(gs_image_enum, planes[index].row);
return 0;
}
ENUM_PTR(0, gs_image_enum, dev);
ENUM_PTR(1, gs_image_enum, info);
ENUM_PTRS_END
static RELOC_PTRS_WITH(gs_image_enum_reloc_ptrs, gs_image_enum *eptr)
{
int i;
RELOC_PTR(gs_image_enum, dev);
RELOC_PTR(gs_image_enum, info);
for (i = 0; i < eptr->num_planes; i++)
RELOC_CONST_STRING_PTR(gs_image_enum, planes[i].source);
for (i = 0; i < eptr->num_planes; i++)
RELOC_STRING_PTR(gs_image_enum, planes[i].row);
}
RELOC_PTRS_END
static int
is_image_visible(const gs_image_common_t * pic, gs_gstate * pgs, gx_clip_path *pcpath)
{
/* HACK : We need the source image size here,
but gs_image_common_t doesn't pass it.
We would like to move Width, Height to gs_image_common,
but gs_image2_t appears to have those fields of double type.
*/
if (pic->type->begin_typed_image == gx_begin_image1) {
gs_image1_t *pim = (gs_image1_t *) pic;
gs_rect image_rect = {{0, 0}, {0, 0}};
gs_rect device_rect;
gs_int_rect device_int_rect;
gs_matrix mat;
int code;
image_rect.q.x = pim->Width;
image_rect.q.y = pim->Height;
if (pic->ImageMatrix.xx == ctm_only(pgs).xx &&
pic->ImageMatrix.xy == ctm_only(pgs).xy &&
pic->ImageMatrix.yx == ctm_only(pgs).yx &&
pic->ImageMatrix.yy == ctm_only(pgs).yy) {
/* Handle common special case separately to accept singular matrix */
mat.xx = mat.yy = 1.;
mat.yx = mat.xy = 0.;
mat.tx = ctm_only(pgs).tx - pic->ImageMatrix.tx;
mat.ty = ctm_only(pgs).ty - pic->ImageMatrix.ty;
} else {
code = gs_matrix_invert(&pic->ImageMatrix, &mat);
if (code < 0)
return code;
code = gs_matrix_multiply(&mat, &ctm_only(pgs), &mat);
if (code < 0)
return code;
}
code = gs_bbox_transform(&image_rect, &mat, &device_rect);
if (code < 0)
return code;
device_int_rect.p.x = (int)floor(device_rect.p.x);
device_int_rect.p.y = (int)floor(device_rect.p.y);
device_int_rect.q.x = (int)ceil(device_rect.q.x);
device_int_rect.q.y = (int)ceil(device_rect.q.y);
if (!gx_cpath_rect_visible(pcpath, &device_int_rect))
return 0;
}
return 1;
}
/* Create an image enumerator given image parameters and a graphics state. */
int
gs_image_begin_typed(const gs_image_common_t * pic, gs_gstate * pgs,
bool uses_color, bool image_is_text, gx_image_enum_common_t ** ppie)
{
gx_device *dev = gs_currentdevice(pgs);
gx_clip_path *pcpath;
int code = gx_effective_clip_path(pgs, &pcpath);
gx_device *dev2 = dev;
gx_device_color dc_temp, *pdevc = gs_currentdevicecolor_inline(pgs);
if (code < 0)
return code;
/* Processing an image object operation, but this may be for a text object */
ensure_tag_is_set(pgs, pgs->device, image_is_text ? GS_TEXT_TAG : GS_IMAGE_TAG); /* NB: may unset_dev_color */
if (uses_color) {
code = gx_set_dev_color(pgs);
if (code != 0)
return code;
code = gs_gstate_color_load(pgs);
if (code < 0)
return code;
}
/* Imagemask with shading color needs a special optimization
with converting the image into a clipping.
Check for such case after gs_gstate_color_load is done,
because it can cause interpreter callout.
*/
if (pic->type->begin_typed_image == &gx_begin_image1) {
gs_image_t *image = (gs_image_t *)pic;
if(image->ImageMask) {
bool transpose = false;
gs_matrix_double mat;
if((code = gx_image_compute_mat(pgs, NULL, &(image->ImageMatrix), &mat)) < 0)
return code;
if ((any_abs(mat.xy) > any_abs(mat.xx)) && (any_abs(mat.yx) > any_abs(mat.yy)))
transpose = true; /* pure landscape */
code = gx_image_fill_masked_start(dev, gs_currentdevicecolor_inline(pgs), transpose,
pcpath, pgs->memory, pgs->log_op, &dev2);
if (code < 0)
return code;
}
if (dev->interpolate_control < 0) { /* Force interpolation before begin_typed_image */
((gs_data_image_t *)pic)->Interpolate = true;
}
else if (dev->interpolate_control == 0) {
((gs_data_image_t *)pic)->Interpolate = false; /* Suppress interpolation */
}
if (dev2 != dev) {
set_nonclient_dev_color(&dc_temp, 1);
pdevc = &dc_temp;
}
}
code = gx_device_begin_typed_image(dev2, (const gs_gstate *)pgs,
NULL, pic, NULL, pdevc, pcpath, pgs->memory, ppie);
if (code < 0)
return code;
code = is_image_visible(pic, pgs, pcpath);
if (code < 0)
return code;
if (!code)
(*ppie)->skipping = true;
return 0;
}
/* Allocate an image enumerator. */
static void
image_enum_init(gs_image_enum * penum)
{
/* Clean pointers for GC. */
penum->info = 0;
penum->dev = 0;
penum->plane_index = 0;
penum->num_planes = 0;
}
gs_image_enum *
gs_image_enum_alloc(gs_memory_t * mem, client_name_t cname)
{
gs_image_enum *penum =
gs_alloc_struct(mem, gs_image_enum, &st_gs_image_enum, cname);
if (penum != 0) {
penum->memory = mem;
image_enum_init(penum);
}
return penum;
}
/* Start processing an ImageType 1 image. */
int
gs_image_init(gs_image_enum * penum, const gs_image_t * pim, bool multi,
bool image_is_text, gs_gstate * pgs)
{
gs_image_t image;
gx_image_enum_common_t *pie;
int code;
image = *pim;
if (image.ImageMask) {
image.ColorSpace = NULL;
if (pgs->in_cachedevice <= 1)
image.adjust = false;
} else {
if (pgs->in_cachedevice)
return_error(gs_error_undefined);
if (image.ColorSpace == NULL) {
/*
* Use of a non-current color space is potentially
* incorrect, but it appears this case doesn't arise.
*/
image.ColorSpace = gs_cspace_new_DeviceGray(pgs->memory);
if (image.ColorSpace == NULL)
return_error(gs_error_VMerror);
}
}
code = gs_image_begin_typed((const gs_image_common_t *)&image, pgs,
image.ImageMask | image.CombineWithColor,
image_is_text, &pie);
if (code < 0)
return code;
return gs_image_enum_init(penum, pie, (const gs_data_image_t *)&image,
pgs);
}
/*
* Return the number of bytes of data per row for a given plane.
*/
inline uint
gs_image_bytes_per_plane_row(const gs_image_enum * penum, int plane)
{
const gx_image_enum_common_t *pie = penum->info;
return (pie->plane_widths[plane] * pie->plane_depths[plane] + 7) >> 3;
}
/* Cache information when initializing, or after transferring plane data. */
static void
cache_planes(gs_image_enum *penum)
{
int i;
if (penum->wanted_varies) {
penum->wanted_varies =
!gx_image_planes_wanted(penum->info, penum->wanted);
for (i = 0; i < penum->num_planes; ++i)
if (penum->wanted[i])
penum->image_planes[i].raster =
gs_image_bytes_per_plane_row(penum, i);
else
penum->image_planes[i].data = 0;
}
}
/* Advance to the next wanted plane. */
static void
next_plane(gs_image_enum *penum)
{
int px = penum->plane_index;
do {
if (++px == penum->num_planes)
px = 0;
} while (!penum->wanted[px]);
penum->plane_index = px;
}
/*
* Initialize plane_index and (if appropriate) wanted and
* wanted_varies at the beginning of a group of planes.
*/
static void
begin_planes(gs_image_enum *penum)
{
cache_planes(penum);
penum->plane_index = -1;
next_plane(penum);
}
int
gs_image_common_init(gs_image_enum * penum, gx_image_enum_common_t * pie,
const gs_data_image_t * pim, gx_device * dev)
{
/*
* HACK : For a compatibility with gs_image_cleanup_and_free_enum,
* penum->memory must be initialized in advance
* with the memory heap that owns *penum.
*/
int i;
if (pim->Width == 0 || pim->Height == 0) {
gx_image_end(pie, false);
return 1;
}
image_enum_init(penum);
penum->dev = dev;
penum->info = pie;
penum->num_planes = pie->num_planes;
/*
* Note that for ImageType 3 InterleaveType 2, penum->height (the
* expected number of data rows) differs from pim->Height (the height
* of the source image in scan lines). This doesn't normally cause
* any problems, because penum->height is not used to determine when
* all the data has been processed: that is up to the plane_data
* procedure for the specific image type.
*/
penum->height = pim->Height;
for (i = 0; i < pie->num_planes; ++i) {
penum->planes[i].pos = 0;
penum->planes[i].source.size = 0; /* for gs_image_next_planes */
penum->planes[i].source.data = 0; /* for GC */
penum->planes[i].row.data = 0; /* for GC */
penum->planes[i].row.size = 0; /* ditto */
penum->image_planes[i].data_x = 0; /* just init once, never changes */
}
/* Initialize the dynamic part of the state. */
penum->y = 0;
penum->error = false;
penum->wanted_varies = true;
begin_planes(penum);
return 0;
}
/* Initialize an enumerator for a general image.
penum->memory must be initialized in advance.
*/
int
gs_image_enum_init(gs_image_enum * penum, gx_image_enum_common_t * pie,
const gs_data_image_t * pim, gs_gstate *pgs)
{
pgs->device->sgr.stroke_stored = false;
return gs_image_common_init(penum, pie, pim,
(pgs->in_charpath ? NULL :
gs_currentdevice_inline(pgs)));
}
/* Return the set of planes wanted. */
const byte *
gs_image_planes_wanted(gs_image_enum *penum)
{
int i;
/*
* A plane is wanted at this interface if it is wanted by the
* underlying machinery and has no buffered or retained data.
*/
for (i = 0; i < penum->num_planes; ++i)
penum->client_wanted[i] =
(penum->wanted[i] &&
penum->planes[i].pos + penum->planes[i].source.size <
penum->image_planes[i].raster);
return penum->client_wanted;
}
/*
* Return the enumerator memory used for allocating the row buffers.
* Because some PostScript files use save/restore within an image data
* reading procedure, this must be a stable allocator.
*/
static gs_memory_t *
gs_image_row_memory(const gs_image_enum *penum)
{
return gs_memory_stable(penum->memory);
}
/* Free the row buffers when cleaning up. */
static void
free_row_buffers(gs_image_enum *penum, int num_planes, client_name_t cname)
{
int i;
for (i = num_planes - 1; i >= 0; --i) {
if_debug3m('b', penum->memory, "[b]free plane %d row (0x%lx,%u)\n",
i, (ulong)penum->planes[i].row.data,
penum->planes[i].row.size);
gs_free_string(gs_image_row_memory(penum), penum->planes[i].row.data,
penum->planes[i].row.size, cname);
penum->planes[i].row.data = 0;
penum->planes[i].row.size = 0;
}
}
/* Process the next piece of an image. */
int
gs_image_next(gs_image_enum * penum, const byte * dbytes, uint dsize,
uint * pused)
{
int px = penum->plane_index;
int num_planes = penum->num_planes;
int i, code;
uint used[GS_IMAGE_MAX_COMPONENTS];
gs_const_string plane_data[GS_IMAGE_MAX_COMPONENTS];
if (penum->planes[px].source.size != 0)
return_error(gs_error_rangecheck);
for (i = 0; i < num_planes; i++)
plane_data[i].size = 0;
plane_data[px].data = dbytes;
plane_data[px].size = dsize;
penum->error = false;
code = gs_image_next_planes(penum, plane_data, used);
*pused = used[px];
if (code >= 0)
next_plane(penum);
return code;
}
int
gs_image_next_planes(gs_image_enum * penum,
gs_const_string *plane_data /*[num_planes]*/,
uint *used /*[num_planes]*/)
{
const int num_planes = penum->num_planes;
int i;
int code = 0;
#ifdef DEBUG
if (gs_debug_c('b')) {
int pi;
for (pi = 0; pi < num_planes; ++pi)
dmprintf6(penum->memory, "[b]plane %d source=0x%lx,%u pos=%u data=0x%lx,%u\n",
pi, (ulong)penum->planes[pi].source.data,
penum->planes[pi].source.size, penum->planes[pi].pos,
(ulong)plane_data[pi].data, plane_data[pi].size);
}
#endif
for (i = 0; i < num_planes; ++i) {
used[i] = 0;
if (penum->wanted[i] && plane_data[i].size != 0) {
penum->planes[i].source.size = plane_data[i].size;
penum->planes[i].source.data = plane_data[i].data;
}
}
for (;;) {
/* If wanted can vary, only transfer 1 row at a time. */
int h = (penum->wanted_varies ? 1 : max_int);
/* Move partial rows from source[] to row[]. */
for (i = 0; i < num_planes; ++i) {
int pos, size;
uint raster;
if (!penum->wanted[i])
continue; /* skip unwanted planes */
pos = penum->planes[i].pos;
size = penum->planes[i].source.size;
raster = penum->image_planes[i].raster;
if (size > 0) {
if (pos < raster && (pos != 0 || size < raster)) {
/* Buffer a partial row. */
int copy = min(size, raster - pos);
uint old_size = penum->planes[i].row.size;
/* Make sure the row buffer is fully allocated. */
if (raster > old_size) {
gs_memory_t *mem = gs_image_row_memory(penum);
byte *old_data = penum->planes[i].row.data;
byte *row =
(old_data == 0 ?
gs_alloc_string(mem, raster,
"gs_image_next(row)") :
gs_resize_string(mem, old_data, old_size, raster,
"gs_image_next(row)"));
if_debug5m('b', mem, "[b]plane %d row (0x%lx,%u) => (0x%lx,%u)\n",
i, (ulong)old_data, old_size,
(ulong)row, raster);
if (row == 0) {
code = gs_note_error(gs_error_VMerror);
free_row_buffers(penum, i, "gs_image_next(row)");
break;
}
penum->planes[i].row.data = row;
penum->planes[i].row.size = raster;
}
memcpy(penum->planes[i].row.data + pos,
penum->planes[i].source.data, copy);
penum->planes[i].source.data += copy;
penum->planes[i].source.size = size -= copy;
penum->planes[i].pos = pos += copy;
used[i] += copy;
}
}
if (h == 0)
continue; /* can't transfer any data this cycle */
if (pos == raster) {
/*
* This plane will be transferred from the row buffer,
* so we can only transfer one row.
*/
h = min(h, 1);
penum->image_planes[i].data = penum->planes[i].row.data;
} else if (pos == 0 && size >= raster) {
/* We can transfer 1 or more planes from the source. */
if (raster) {
h = min(h, size / raster);
penum->image_planes[i].data = penum->planes[i].source.data;
}
else
h = 0;
} else
h = 0; /* not enough data in this plane */
}
if (h == 0 || code != 0)
break;
/* Pass rows to the device. */
if (penum->dev == 0) {
/*
* ****** NOTE: THE FOLLOWING IS NOT CORRECT FOR ImageType 3
* ****** InterleaveType 2, SINCE MASK HEIGHT AND IMAGE HEIGHT
* ****** MAY DIFFER (BY AN INTEGER FACTOR). ALSO, plane_depths[0]
* ****** AND plane_widths[0] ARE NOT UPDATED.
*/
if (penum->y + h < penum->height)
code = 0;
else
h = penum->height - penum->y, code = 1;
} else {
code = gx_image_plane_data_rows(penum->info, penum->image_planes,
h, &h);
if_debug2m('b', penum->memory, "[b]used %d, code=%d\n", h, code);
penum->error = code < 0;
}
penum->y += h;
/* Update positions and sizes. */
if (h == 0)
break;
for (i = 0; i < num_planes; ++i) {
int count;
if (!penum->wanted[i])
continue;
count = penum->image_planes[i].raster * h;
if (penum->planes[i].pos) {
/* We transferred the row from the row buffer. */
penum->planes[i].pos = 0;
} else {
/* We transferred the row(s) from the source. */
penum->planes[i].source.data += count;
penum->planes[i].source.size -= count;
used[i] += count;
}
}
cache_planes(penum);
if (code > 0)
break;
}
/* Return the retained data pointers. */
for (i = 0; i < num_planes; ++i)
plane_data[i] = penum->planes[i].source;
return code;
}
/* Clean up after processing an image. */
/* Public for ghostpcl. */
int
gs_image_cleanup(gs_image_enum * penum, gs_gstate *pgs)
{
int code = 0, code1;
free_row_buffers(penum, penum->num_planes, "gs_image_cleanup(row)");
if (penum->info != 0) {
if (dev_proc(penum->info->dev, dev_spec_op)(penum->info->dev,
gxdso_pattern_is_cpath_accum, NULL, 0)) {
/* Performing a conversion of imagemask into a clipping path. */
gx_device *cdev = penum->info->dev;
code = gx_image_end(penum->info, !penum->error); /* Releases penum->info . */
code1 = gx_image_fill_masked_end(cdev, penum->dev, gs_currentdevicecolor_inline(pgs));
if (code == 0)
code = code1;
} else
code = gx_image_end(penum->info, !penum->error);
}
/* Don't free the local enumerator -- the client does that. */
return code;
}
/* Clean up after processing an image and free the enumerator. */
int
gs_image_cleanup_and_free_enum(gs_image_enum * penum, gs_gstate *pgs)
{
int code = gs_image_cleanup(penum, pgs);
gs_free_object(penum->memory, penum, "gs_image_cleanup_and_free_enum");
return code;
}
|