1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
from pypy.objspace.std.objspace import *
from pypy.objspace.std.noneobject import W_NoneObject
from pypy.objspace.std.restricted_int import r_int, LONG_BIT
"""
The implementation of integers is a bit difficult,
since integers are currently undergoing the change to turn
themselves into longs under overflow circumstances.
The restricted Python does not overflow or throws
exceptions.
The definitions in this file are fine, given that
restricted Python integers behave that way.
But for testing, the resticted stuff must be run
by CPython which has different behavior.
For that reason, I defined an r_int extension class
for native integers, which tries to behave as in
RPython, just for test purposes.
"""
class W_IntObject(W_Object):
from pypy.objspace.std.inttype import int_typedef as typedef
def __init__(w_self, space, intval):
W_Object.__init__(w_self, space)
w_self.intval = r_int(intval)
def __repr__(w_self):
""" representation for debugging purposes """
return "%s(%d)" % (w_self.__class__.__name__, w_self.intval)
registerimplementation(W_IntObject)
"""
XXX not implemented:
free list
FromString
FromUnicode
print
"""
def unwrap__Int(space, w_int1):
return int(w_int1.intval)
def repr__Int(space, w_int1):
a = w_int1.intval
res = str(a)
return space.wrap(res)
str__Int = repr__Int
## deprecated
## we are going to support rich compare, only
##def int_int_cmp(space, w_int1, w_int2):
## i = w_int1.intval
## j = w_int2.intval
## if i < j:
## ret = -1
## elif i > j:
## ret = 1
## else:
## ret = 0
## return W_IntObject(space, ret)
##
##StdObjSpace.cmp.register(int_int_cmp, W_IntObject, W_IntObject)
def lt__Int_Int(space, w_int1, w_int2):
i = w_int1.intval
j = w_int2.intval
return space.newbool( i < j )
def le__Int_Int(space, w_int1, w_int2):
i = w_int1.intval
j = w_int2.intval
return space.newbool( i <= j )
def eq__Int_Int(space, w_int1, w_int2):
i = w_int1.intval
j = w_int2.intval
return space.newbool( i == j )
def ne__Int_Int(space, w_int1, w_int2):
i = w_int1.intval
j = w_int2.intval
return space.newbool( i != j )
def gt__Int_Int(space, w_int1, w_int2):
i = w_int1.intval
j = w_int2.intval
return space.newbool( i > j )
def ge__Int_Int(space, w_int1, w_int2):
i = w_int1.intval
j = w_int2.intval
return space.newbool( i >= j )
STRICT_HASH = True # temporary, to be put elsewhere or removed
def _hash_strict(space, w_int1):
#/* XXX If this is changed, you also need to change the way
# Python's long, float and complex types are hashed. */
x = w_int1.intval
if x == -1:
x = -2
return W_IntObject(space, x)
def _hash_liberal(space, w_int1):
# Armin: unlike CPython we have no need to special-case the value -1
return w_int1
# Chris: I'm not yet convinced that we want to make hash()
# return different values that CPython does.
# So for the moment, both versions are here,
# and we might think of some config options
# or decide to drop compatibility (using pypy-dev).
def hash__Int(space, w_int1):
if STRICT_HASH:
return _hash_strict(space, w_int1)
else:
return _hash_liberal(space, w_int1)
def add__Int_Int(space, w_int1, w_int2):
x = w_int1.intval
y = w_int2.intval
try:
z = x + y
except OverflowError:
raise FailedToImplement(space.w_OverflowError,
space.wrap("integer addition"))
return W_IntObject(space, z)
def sub__Int_Int(space, w_int1, w_int2):
x = w_int1.intval
y = w_int2.intval
try:
z = x - y
except OverflowError:
raise FailedToImplement(space.w_OverflowError,
space.wrap("integer substraction"))
return W_IntObject(space, z)
def mul__Int_Int(space, w_int1, w_int2):
x = w_int1.intval
y = w_int2.intval
try:
z = x * y
except OverflowError:
raise FailedToImplement(space.w_OverflowError,
space.wrap("integer multiplication"))
return W_IntObject(space, z)
def _floordiv(space, w_int1, w_int2):
x = w_int1.intval
y = w_int2.intval
try:
z = x // y
except ZeroDivisionError:
raise OperationError(space.w_ZeroDivisionError,
space.wrap("integer division by zero"))
except OverflowError:
raise FailedToImplement(space.w_OverflowError,
space.wrap("integer division"))
return W_IntObject(space, z)
def _truediv(space, w_int1, w_int2):
x = w_int1.intval
y = w_int2.intval
try:
z = x // y
t = x % y
except ZeroDivisionError:
raise OperationError(space.w_ZeroDivisionError,
space.wrap("integer division by zero"))
except OverflowError:
return space.div(space.newfloat(float(x)), w_int2)
if t != 0: # gives a float
return space.div(space.newfloat(float(x)), w_int2)
return W_IntObject(space, z)
def mod__Int_Int(space, w_int1, w_int2):
x = w_int1.intval
y = w_int2.intval
try:
z = x % y
except ZeroDivisionError:
raise OperationError(space.w_ZeroDivisionError,
space.wrap("integer modulo by zero"))
except OverflowError:
raise FailedToImplement(space.w_OverflowError,
space.wrap("integer modulo"))
return W_IntObject(space, z)
def divmod__Int_Int(space, w_int1, w_int2):
x = w_int1.intval
y = w_int2.intval
try:
z = x // y
except ZeroDivisionError:
raise OperationError(space.w_ZeroDivisionError,
space.wrap("integer divmod by zero"))
except OverflowError:
raise FailedToImplement(space.w_OverflowError,
space.wrap("integer modulo"))
# no overflow possible
m = x % y
return space.wrap((z,m))
def div__Int_Int(space, w_int1, w_int2):
# Select the proper div
if 1 / 2 == 1 // 2:
return _floordiv(space, w_int1, w_int2)
else:
return _truediv(space, w_int1, w_int2)
floordiv__Int_Int = _floordiv
# helper for pow()
def _impl_int_int_pow(space, iv, iw, iz=None):
if iw < 0:
if iz is not None:
raise OperationError(space.w_TypeError,
space.wrap("pow() 2nd argument "
"cannot be negative when 3rd argument specified"))
return space.pow(space.float(space.wrap(iv)),
space.float(space.wrap(iw)),
space.w_None)
## bounce it, since it always returns float
raise FailedToImplement(space.w_ValueError,
space.wrap("integer exponentiation"))
if iz is not None:
if iz == 0:
raise OperationError(space.w_ValueError,
space.wrap("pow() 3rd argument cannot be 0"))
temp = iv
ix = 1
try:
while iw > 0:
if iw & 1:
ix = ix*temp
iw >>= 1 #/* Shift exponent down by 1 bit */
if iw==0:
break
temp *= temp #/* Square the value of temp */
if iz:
#/* If we did a multiplication, perform a modulo */
ix = ix % iz;
temp = temp % iz;
if iz:
ix = ix % iz
except OverflowError:
raise FailedToImplement(space.w_OverflowError,
space.wrap("integer exponentiation"))
return W_IntObject(space, ix)
"""
def pow__Int_Int_Int(space, w_int1, w_int2, w_int3):
x = w_int1.intval
y = w_int2.intval
z = w_int3.intval
ret = _impl_int_int_pow(space, x, y, z)
return W_IntObject(space, ret)
"""
def pow__Int_Int_Int(space, w_int1, w_int2, w_int3):
x = w_int1.intval
y = w_int2.intval
z = w_int3.intval
return _impl_int_int_pow(space, x, y, z)
def pow__Int_Int_None(space, w_int1, w_int2, w_int3):
x = w_int1.intval
y = w_int2.intval
return _impl_int_int_pow(space, x, y)
def neg__Int(space, w_int1):
a = w_int1.intval
try:
x = -a
except OverflowError:
raise FailedToImplement(space.w_OverflowError,
space.wrap("integer negation"))
return W_IntObject(space, x)
# pos__Int is supposed to do nothing, unless it has
# a derived integer object, where it should return
# an exact one.
def pos__Int(space, w_int1):
return int__Int(space, w_int1)
def abs__Int(space, w_int1):
if w_int1.intval >= 0:
return pos__Int(space, w_int1)
else:
return neg__Int(space, w_int1)
def nonzero__Int(space, w_int1):
return space.newbool(w_int1.intval != 0)
def invert__Int(space, w_int1):
x = w_int1.intval
a = ~x
return W_IntObject(space, a)
def lshift__Int_Int(space, w_int1, w_int2):
a = w_int1.intval
b = w_int2.intval
if b < 0:
raise OperationError(space.w_ValueError,
space.wrap("negative shift count"))
if a == 0 or b == 0:
return int__Int(space, w_int1)
if b >= LONG_BIT:
raise FailedToImplement(space.w_OverflowError,
space.wrap("integer left shift"))
##
## XXX please! have a look into pyport.h and see how to implement
## the overflow checking, using macro Py_ARITHMETIC_RIGHT_SHIFT
## we *assume* that the overflow checking is done correctly
## in the code generator, which is not trivial!
## XXX also note that Python 2.3 returns a long and never raises
## OverflowError.
try:
c = a << b
## the test in C code is
## if (a != Py_ARITHMETIC_RIGHT_SHIFT(long, c, b)) {
## if (PyErr_Warn(PyExc_FutureWarning,
# and so on
except OverflowError:
raise FailedToImplement(space.w_OverflowError,
space.wrap("integer left shift"))
return W_IntObject(space, c)
def rshift__Int_Int(space, w_int1, w_int2):
a = w_int1.intval
b = w_int2.intval
if b < 0:
raise OperationError(space.w_ValueError,
space.wrap("negative shift count"))
if a == 0 or b == 0:
return int__Int(space, w_int1)
if b >= LONG_BIT:
if a < 0:
a = -1
else:
a = 0
else:
## please look into pyport.h, how >> should be implemented!
## a = Py_ARITHMETIC_RIGHT_SHIFT(long, a, b);
a = a >> b
return W_IntObject(space, a)
def and__Int_Int(space, w_int1, w_int2):
a = w_int1.intval
b = w_int2.intval
res = a & b
return W_IntObject(space, res)
def xor__Int_Int(space, w_int1, w_int2):
a = w_int1.intval
b = w_int2.intval
res = a ^ b
return W_IntObject(space, res)
def or__Int_Int(space, w_int1, w_int2):
a = w_int1.intval
b = w_int2.intval
res = a | b
return W_IntObject(space, res)
# coerce is not wanted
##
##static int
##coerce__Int(PyObject **pv, PyObject **pw)
##{
## if (PyInt_Check(*pw)) {
## Py_INCREF(*pv);
## Py_INCREF(*pw);
## return 0;
## }
## return 1; /* Can't do it */
##}
# int__Int is supposed to do nothing, unless it has
# a derived integer object, where it should return
# an exact one.
def int__Int(space, w_int1):
if space.is_true(space.is_(space.type(w_int1), space.w_int)):
return w_int1
a = w_int1.intval
return W_IntObject(space, a)
"""
# Not registered
def long__Int(space, w_int1):
a = w_int1.intval
x = long(a) ## XXX should this really be done so?
return space.newlong(x)
"""
def float__Int(space, w_int1):
a = w_int1.intval
x = float(a)
return space.newfloat(x)
def oct__Int(space, w_int1):
x = w_int1.intval
if x < 0:
## XXX what about this warning?
#if (PyErr_Warn(PyExc_FutureWarning,
# "hex()/oct() of negative int will return "
# "a signed string in Python 2.4 and up") < 0)
# return NULL;
pass
if x == 0:
ret = "0"
else:
ret = "0%lo" % x
return space.wrap(ret)
def hex__Int(space, w_int1):
x = w_int1.intval
if x < 0:
## XXX what about this warning?
#if (PyErr_Warn(PyExc_FutureWarning,
# "hex()/oct() of negative int will return "
# "a signed string in Python 2.4 and up") < 0)
# return NULL;
pass
if x == 0:
ret = "0"
else:
ret = "0x%lx" % x
return space.wrap(ret)
register_all(vars())
|